Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlomcmcv Structured version   Visualization version   GIF version

Theorem hlomcmcv 38226
Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
hlomcmcv (𝐾 ∈ HL β†’ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))

Proof of Theorem hlomcmcv
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2733 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
3 eqid 2733 . . 3 (ltβ€˜πΎ) = (ltβ€˜πΎ)
4 eqid 2733 . . 3 (joinβ€˜πΎ) = (joinβ€˜πΎ)
5 eqid 2733 . . 3 (0.β€˜πΎ) = (0.β€˜πΎ)
6 eqid 2733 . . 3 (1.β€˜πΎ) = (1.β€˜πΎ)
7 eqid 2733 . . 3 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
81, 2, 3, 4, 5, 6, 7ishlat1 38222 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ (Atomsβ€˜πΎ)βˆ€π‘¦ ∈ (Atomsβ€˜πΎ)(π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ (Atomsβ€˜πΎ)(𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧(leβ€˜πΎ)(π‘₯(joinβ€˜πΎ)𝑦))) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)βˆƒπ‘¦ ∈ (Baseβ€˜πΎ)βˆƒπ‘§ ∈ (Baseβ€˜πΎ)(((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ ∧ π‘₯(ltβ€˜πΎ)𝑦) ∧ (𝑦(ltβ€˜πΎ)𝑧 ∧ 𝑧(ltβ€˜πΎ)(1.β€˜πΎ))))))
98simplbi 499 1 (𝐾 ∈ HL β†’ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  lecple 17204  ltcplt 18261  joincjn 18264  0.cp0 18376  1.cp1 18377  CLatccla 18451  OMLcoml 38045  Atomscatm 38133  CvLatclc 38135  HLchlt 38220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-hlat 38221
This theorem is referenced by:  hloml  38227  hlclat  38228  hlcvl  38229  cvr1  38281  cvrp  38287  atcvr1  38288  atcvr2  38289
  Copyright terms: Public domain W3C validator