![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmcv | Structured version Visualization version GIF version |
Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
hlomcmcv | β’ (πΎ β HL β (πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | eqid 2733 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
3 | eqid 2733 | . . 3 β’ (ltβπΎ) = (ltβπΎ) | |
4 | eqid 2733 | . . 3 β’ (joinβπΎ) = (joinβπΎ) | |
5 | eqid 2733 | . . 3 β’ (0.βπΎ) = (0.βπΎ) | |
6 | eqid 2733 | . . 3 β’ (1.βπΎ) = (1.βπΎ) | |
7 | eqid 2733 | . . 3 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ishlat1 38222 | . 2 β’ (πΎ β HL β ((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ (βπ₯ β (AtomsβπΎ)βπ¦ β (AtomsβπΎ)(π₯ β π¦ β βπ§ β (AtomsβπΎ)(π§ β π₯ β§ π§ β π¦ β§ π§(leβπΎ)(π₯(joinβπΎ)π¦))) β§ βπ₯ β (BaseβπΎ)βπ¦ β (BaseβπΎ)βπ§ β (BaseβπΎ)(((0.βπΎ)(ltβπΎ)π₯ β§ π₯(ltβπΎ)π¦) β§ (π¦(ltβπΎ)π§ β§ π§(ltβπΎ)(1.βπΎ)))))) |
9 | 8 | simplbi 499 | 1 β’ (πΎ β HL β (πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 β wcel 2107 β wne 2941 βwral 3062 βwrex 3071 class class class wbr 5149 βcfv 6544 (class class class)co 7409 Basecbs 17144 lecple 17204 ltcplt 18261 joincjn 18264 0.cp0 18376 1.cp1 18377 CLatccla 18451 OMLcoml 38045 Atomscatm 38133 CvLatclc 38135 HLchlt 38220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-hlat 38221 |
This theorem is referenced by: hloml 38227 hlclat 38228 hlcvl 38229 cvr1 38281 cvrp 38287 atcvr1 38288 atcvr2 38289 |
Copyright terms: Public domain | W3C validator |