| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmcv | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlomcmcv | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2729 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 6 | eqid 2729 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 7 | eqid 2729 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ishlat1 39345 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥 ∧ 𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧 ∧ 𝑧(lt‘𝐾)(1.‘𝐾)))))) |
| 9 | 8 | simplbi 497 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 ltcplt 18269 joincjn 18272 0.cp0 18382 1.cp1 18383 CLatccla 18457 OMLcoml 39168 Atomscatm 39256 CvLatclc 39258 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-hlat 39344 |
| This theorem is referenced by: hloml 39350 hlclat 39351 hlcvl 39352 cvr1 39404 cvrp 39410 atcvr1 39411 atcvr2 39412 |
| Copyright terms: Public domain | W3C validator |