| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmcv | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlomcmcv | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2730 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2730 | . . 3 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 4 | eqid 2730 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2730 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 6 | eqid 2730 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 7 | eqid 2730 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ishlat1 39352 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥 ∧ 𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧 ∧ 𝑧(lt‘𝐾)(1.‘𝐾)))))) |
| 9 | 8 | simplbi 497 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 ltcplt 18276 joincjn 18279 0.cp0 18389 1.cp1 18390 CLatccla 18464 OMLcoml 39175 Atomscatm 39263 CvLatclc 39265 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-hlat 39351 |
| This theorem is referenced by: hloml 39357 hlclat 39358 hlcvl 39359 cvr1 39411 cvrp 39417 atcvr1 39418 atcvr2 39419 |
| Copyright terms: Public domain | W3C validator |