Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlomcmcv Structured version   Visualization version   GIF version

Theorem hlomcmcv 39475
Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
hlomcmcv (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))

Proof of Theorem hlomcmcv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2733 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2733 . . 3 (lt‘𝐾) = (lt‘𝐾)
4 eqid 2733 . . 3 (join‘𝐾) = (join‘𝐾)
5 eqid 2733 . . 3 (0.‘𝐾) = (0.‘𝐾)
6 eqid 2733 . . 3 (1.‘𝐾) = (1.‘𝐾)
7 eqid 2733 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat1 39471 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧𝑥𝑧𝑦𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))))
98simplbi 497 1 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2113  wne 2929  wral 3048  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  ltcplt 18216  joincjn 18219  0.cp0 18329  1.cp1 18330  CLatccla 18406  OMLcoml 39294  Atomscatm 39382  CvLatclc 39384  HLchlt 39469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355  df-hlat 39470
This theorem is referenced by:  hloml  39476  hlclat  39477  hlcvl  39478  cvr1  39529  cvrp  39535  atcvr1  39536  atcvr2  39537
  Copyright terms: Public domain W3C validator