| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlomcmcv | Structured version Visualization version GIF version | ||
| Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| hlomcmcv | ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | eqid 2733 | . . 3 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
| 4 | eqid 2733 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 5 | eqid 2733 | . . 3 ⊢ (0.‘𝐾) = (0.‘𝐾) | |
| 6 | eqid 2733 | . . 3 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 7 | eqid 2733 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ishlat1 39471 | . 2 ⊢ (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)(𝑥 ≠ 𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧 ≠ 𝑥 ∧ 𝑧 ≠ 𝑦 ∧ 𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥 ∧ 𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧 ∧ 𝑧(lt‘𝐾)(1.‘𝐾)))))) |
| 9 | 8 | simplbi 497 | 1 ⊢ (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 lecple 17170 ltcplt 18216 joincjn 18219 0.cp0 18329 1.cp1 18330 CLatccla 18406 OMLcoml 39294 Atomscatm 39382 CvLatclc 39384 HLchlt 39469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 df-hlat 39470 |
| This theorem is referenced by: hloml 39476 hlclat 39477 hlcvl 39478 cvr1 39529 cvrp 39535 atcvr1 39536 atcvr2 39537 |
| Copyright terms: Public domain | W3C validator |