Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlomcmcv Structured version   Visualization version   GIF version

Theorem hlomcmcv 39334
Description: A Hilbert lattice is orthomodular, complete, and has the covering (exchange) property. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
hlomcmcv (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))

Proof of Theorem hlomcmcv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 eqid 2729 . . 3 (lt‘𝐾) = (lt‘𝐾)
4 eqid 2729 . . 3 (join‘𝐾) = (join‘𝐾)
5 eqid 2729 . . 3 (0.‘𝐾) = (0.‘𝐾)
6 eqid 2729 . . 3 (1.‘𝐾) = (1.‘𝐾)
7 eqid 2729 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat1 39330 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥 ∈ (Atoms‘𝐾)∀𝑦 ∈ (Atoms‘𝐾)(𝑥𝑦 → ∃𝑧 ∈ (Atoms‘𝐾)(𝑧𝑥𝑧𝑦𝑧(le‘𝐾)(𝑥(join‘𝐾)𝑦))) ∧ ∃𝑥 ∈ (Base‘𝐾)∃𝑦 ∈ (Base‘𝐾)∃𝑧 ∈ (Base‘𝐾)(((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)𝑦) ∧ (𝑦(lt‘𝐾)𝑧𝑧(lt‘𝐾)(1.‘𝐾))))))
98simplbi 497 1 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  ltcplt 18232  joincjn 18235  0.cp0 18345  1.cp1 18346  CLatccla 18422  OMLcoml 39153  Atomscatm 39241  CvLatclc 39243  HLchlt 39328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356  df-hlat 39329
This theorem is referenced by:  hloml  39335  hlclat  39336  hlcvl  39337  cvr1  39389  cvrp  39395  atcvr1  39396  atcvr2  39397
  Copyright terms: Public domain W3C validator