Step | Hyp | Ref
| Expression |
1 | | ishlat.b |
. . 3
β’ π΅ = (BaseβπΎ) |
2 | | ishlat.l |
. . 3
β’ β€ =
(leβπΎ) |
3 | | ishlat.s |
. . 3
β’ < =
(ltβπΎ) |
4 | | ishlat.j |
. . 3
β’ β¨ =
(joinβπΎ) |
5 | | ishlat.z |
. . 3
β’ 0 =
(0.βπΎ) |
6 | | ishlat.u |
. . 3
β’ 1 =
(1.βπΎ) |
7 | | ishlat.a |
. . 3
β’ π΄ = (AtomsβπΎ) |
8 | 1, 2, 3, 4, 5, 6, 7 | ishlat1 38210 |
. 2
β’ (πΎ β HL β ((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§
(βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))))) |
9 | 1, 2, 4, 7 | iscvlat 38181 |
. . . . 5
β’ (πΎ β CvLat β (πΎ β AtLat β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) |
10 | 9 | 3anbi3i 1159 |
. . . 4
β’ ((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β (πΎ β OML β§ πΎ β CLat β§ (πΎ β AtLat β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))))) |
11 | | anass 469 |
. . . . 5
β’ ((((πΎ β OML β§ πΎ β CLat) β§ πΎ β AtLat) β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β ((πΎ β OML β§ πΎ β CLat) β§ (πΎ β AtLat β§ βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))))) |
12 | | df-3an 1089 |
. . . . . 6
β’ ((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β ((πΎ β OML β§ πΎ β CLat) β§ πΎ β AtLat)) |
13 | 12 | anbi1i 624 |
. . . . 5
β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β (((πΎ β OML β§ πΎ β CLat) β§ πΎ β AtLat) β§ βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) |
14 | | df-3an 1089 |
. . . . 5
β’ ((πΎ β OML β§ πΎ β CLat β§ (πΎ β AtLat β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) β ((πΎ β OML β§ πΎ β CLat) β§ (πΎ β AtLat β§ βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))))) |
15 | 11, 13, 14 | 3bitr4ri 303 |
. . . 4
β’ ((πΎ β OML β§ πΎ β CLat β§ (πΎ β AtLat β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) β ((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§ βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) |
16 | 10, 15 | bitri 274 |
. . 3
β’ ((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β ((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) |
17 | 16 | anbi1i 624 |
. 2
β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§
(βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 )))) β (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β§ (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))))) |
18 | | anass 469 |
. . 3
β’ ((((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β§ (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 )))) β ((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
(βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)) β§ (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 )))))) |
19 | | anass 469 |
. . . . 5
β’
(((βπ₯ β
π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)) β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦)))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))) β (βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)) β§ (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))))) |
20 | | ancom 461 |
. . . . . . 7
β’
((βπ₯ β
π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)) β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦)))) β (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) |
21 | | r19.26-2 3138 |
. . . . . . 7
β’
(βπ₯ β
π΄ βπ¦ β π΄ ((π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) |
22 | 20, 21 | bitr4i 277 |
. . . . . 6
β’
((βπ₯ β
π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)) β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦)))) β βπ₯ β π΄ βπ¦ β π΄ ((π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)))) |
23 | 22 | anbi1i 624 |
. . . . 5
β’
(((βπ₯ β
π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)) β§ βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦)))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))) β (βπ₯ β π΄ βπ¦ β π΄ ((π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 )))) |
24 | 19, 23 | bitr3i 276 |
. . . 4
β’
((βπ₯ β
π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)) β§ (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 )))) β (βπ₯ β π΄ βπ¦ β π΄ ((π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 )))) |
25 | 24 | anbi2i 623 |
. . 3
β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
(βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯)) β§ (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))))) β ((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
(βπ₯ β π΄ βπ¦ β π΄ ((π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))))) |
26 | 18, 25 | bitri 274 |
. 2
β’ ((((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
βπ₯ β π΄ βπ¦ β π΄ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β§ (βπ₯ β π΄ βπ¦ β π΄ (π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 )))) β ((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
(βπ₯ β π΄ βπ¦ β π΄ ((π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))))) |
27 | 8, 17, 26 | 3bitri 296 |
1
β’ (πΎ β HL β ((πΎ β OML β§ πΎ β CLat β§ πΎ β AtLat) β§
(βπ₯ β π΄ βπ¦ β π΄ ((π₯ β π¦ β βπ§ β π΄ (π§ β π₯ β§ π§ β π¦ β§ π§ β€ (π₯ β¨ π¦))) β§ βπ§ β π΅ ((Β¬ π₯ β€ π§ β§ π₯ β€ (π§ β¨ π¦)) β π¦ β€ (π§ β¨ π₯))) β§ βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (( 0 < π₯ β§ π₯ < π¦) β§ (π¦ < π§ β§ π§ < 1 ))))) |