Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat2 Structured version   Visualization version   GIF version

Theorem ishlat2 39309
Description: The predicate "is a Hilbert lattice". Here we replace 𝐾 ∈ CvLat with the weaker 𝐾 ∈ AtLat and show the exchange property explicitly. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b 𝐵 = (Base‘𝐾)
ishlat.l = (le‘𝐾)
ishlat.s < = (lt‘𝐾)
ishlat.j = (join‘𝐾)
ishlat.z 0 = (0.‘𝐾)
ishlat.u 1 = (1.‘𝐾)
ishlat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
ishlat2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   < (𝑥,𝑦,𝑧)   1 (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   0 (𝑥,𝑦,𝑧)

Proof of Theorem ishlat2
StepHypRef Expression
1 ishlat.b . . 3 𝐵 = (Base‘𝐾)
2 ishlat.l . . 3 = (le‘𝐾)
3 ishlat.s . . 3 < = (lt‘𝐾)
4 ishlat.j . . 3 = (join‘𝐾)
5 ishlat.z . . 3 0 = (0.‘𝐾)
6 ishlat.u . . 3 1 = (1.‘𝐾)
7 ishlat.a . . 3 𝐴 = (Atoms‘𝐾)
81, 2, 3, 4, 5, 6, 7ishlat1 39308 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
91, 2, 4, 7iscvlat 39279 . . . . 5 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
1093anbi3i 1159 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ (𝐾 ∈ AtLat ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))))
11 anass 468 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ AtLat) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ (𝐾 ∈ AtLat ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))))
12 df-3an 1089 . . . . . 6 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ AtLat))
1312anbi1i 623 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ↔ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ AtLat) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
14 df-3an 1089 . . . . 5 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ (𝐾 ∈ AtLat ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ (𝐾 ∈ AtLat ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))))
1511, 13, 143bitr4ri 304 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ (𝐾 ∈ AtLat ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
1610, 15bitri 275 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
1716anbi1i 623 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
18 anass 468 . . 3 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))))
19 anass 468 . . . . 5 (((∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))) ↔ (∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
20 ancom 460 . . . . . . 7 ((∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
21 r19.26-2 3144 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ↔ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
2220, 21bitr4i 278 . . . . . 6 ((∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))) ↔ ∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))))
2322anbi1i 623 . . . . 5 (((∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦)))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))) ↔ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
2419, 23bitr3i 277 . . . 4 ((∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))
2524anbi2i 622 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥)) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 ))))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
2618, 25bitri 275 . 2 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ ∀𝑥𝐴𝑦𝐴𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ (∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
278, 17, 263bitri 297 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (∀𝑥𝐴𝑦𝐴 ((𝑥𝑦 → ∃𝑧𝐴 (𝑧𝑥𝑧𝑦𝑧 (𝑥 𝑦))) ∧ ∀𝑧𝐵 ((¬ 𝑥 𝑧𝑥 (𝑧 𝑦)) → 𝑦 (𝑧 𝑥))) ∧ ∃𝑥𝐵𝑦𝐵𝑧𝐵 (( 0 < 𝑥𝑥 < 𝑦) ∧ (𝑦 < 𝑧𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  ltcplt 18378  joincjn 18381  0.cp0 18493  1.cp1 18494  CLatccla 18568  OMLcoml 39131  Atomscatm 39219  AtLatcal 39220  CvLatclc 39221  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-cvlat 39278  df-hlat 39307
This theorem is referenced by:  ishlatiN  39311  hlsuprexch  39338  hlhgt4  39345
  Copyright terms: Public domain W3C validator