Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat2 Structured version   Visualization version   GIF version

Theorem ishlat2 38735
Description: The predicate "is a Hilbert lattice". Here we replace 𝐾 ∈ CvLat with the weaker 𝐾 ∈ AtLat and show the exchange property explicitly. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b 𝐡 = (Baseβ€˜πΎ)
ishlat.l ≀ = (leβ€˜πΎ)
ishlat.s < = (ltβ€˜πΎ)
ishlat.j ∨ = (joinβ€˜πΎ)
ishlat.z 0 = (0.β€˜πΎ)
ishlat.u 1 = (1.β€˜πΎ)
ishlat.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
ishlat2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
Distinct variable groups:   π‘₯,𝑦,𝑧,𝐴   π‘₯,𝐡,𝑦,𝑧   π‘₯,𝐾,𝑦,𝑧
Allowed substitution hints:   < (π‘₯,𝑦,𝑧)   1 (π‘₯,𝑦,𝑧)   ∨ (π‘₯,𝑦,𝑧)   ≀ (π‘₯,𝑦,𝑧)   0 (π‘₯,𝑦,𝑧)

Proof of Theorem ishlat2
StepHypRef Expression
1 ishlat.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 ishlat.l . . 3 ≀ = (leβ€˜πΎ)
3 ishlat.s . . 3 < = (ltβ€˜πΎ)
4 ishlat.j . . 3 ∨ = (joinβ€˜πΎ)
5 ishlat.z . . 3 0 = (0.β€˜πΎ)
6 ishlat.u . . 3 1 = (1.β€˜πΎ)
7 ishlat.a . . 3 𝐴 = (Atomsβ€˜πΎ)
81, 2, 3, 4, 5, 6, 7ishlat1 38734 . 2 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
91, 2, 4, 7iscvlat 38705 . . . . 5 (𝐾 ∈ CvLat ↔ (𝐾 ∈ AtLat ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
1093anbi3i 1156 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ (𝐾 ∈ AtLat ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)))))
11 anass 468 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ AtLat) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ (𝐾 ∈ AtLat ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)))))
12 df-3an 1086 . . . . . 6 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ AtLat))
1312anbi1i 623 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ↔ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ 𝐾 ∈ AtLat) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
14 df-3an 1086 . . . . 5 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ (𝐾 ∈ AtLat ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat) ∧ (𝐾 ∈ AtLat ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)))))
1511, 13, 143bitr4ri 304 . . . 4 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ (𝐾 ∈ AtLat ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
1610, 15bitri 275 . . 3 ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
1716anbi1i 623 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ CvLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) ↔ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
18 anass 468 . . 3 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))))
19 anass 468 . . . . 5 (((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) ↔ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
20 ancom 460 . . . . . . 7 ((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))) ↔ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
21 r19.26-2 3132 . . . . . . 7 (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ↔ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
2220, 21bitr4i 278 . . . . . 6 ((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))) ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))))
2322anbi1i 623 . . . . 5 (((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦)))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))) ↔ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))
2419, 23bitr3i 277 . . . 4 ((βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) ↔ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))
2524anbi2i 622 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯)) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 ))))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
2618, 25bitri 275 . 2 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))) ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
278, 17, 263bitri 297 1 (𝐾 ∈ HL ↔ ((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 ((π‘₯ β‰  𝑦 β†’ βˆƒπ‘§ ∈ 𝐴 (𝑧 β‰  π‘₯ ∧ 𝑧 β‰  𝑦 ∧ 𝑧 ≀ (π‘₯ ∨ 𝑦))) ∧ βˆ€π‘§ ∈ 𝐡 ((Β¬ π‘₯ ≀ 𝑧 ∧ π‘₯ ≀ (𝑧 ∨ 𝑦)) β†’ 𝑦 ≀ (𝑧 ∨ π‘₯))) ∧ βˆƒπ‘₯ ∈ 𝐡 βˆƒπ‘¦ ∈ 𝐡 βˆƒπ‘§ ∈ 𝐡 (( 0 < π‘₯ ∧ π‘₯ < 𝑦) ∧ (𝑦 < 𝑧 ∧ 𝑧 < 1 )))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17150  lecple 17210  ltcplt 18270  joincjn 18273  0.cp0 18385  1.cp1 18386  CLatccla 18460  OMLcoml 38557  Atomscatm 38645  AtLatcal 38646  CvLatclc 38647  HLchlt 38732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-iota 6488  df-fv 6544  df-ov 7407  df-cvlat 38704  df-hlat 38733
This theorem is referenced by:  ishlatiN  38737  hlsuprexch  38764  hlhgt4  38771
  Copyright terms: Public domain W3C validator