| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isldsys | Structured version Visualization version GIF version | ||
| Description: The property of being a lambda-system or Dynkin system. Lambda-systems contain the empty set, are closed under complement, and closed under countable disjoint union. (Contributed by Thierry Arnoux, 13-Jun-2020.) |
| Ref | Expression |
|---|---|
| isldsys.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
| Ref | Expression |
|---|---|
| isldsys | ⊢ (𝑆 ∈ 𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2822 | . . 3 ⊢ (𝑠 = 𝑆 → (∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆)) | |
| 2 | eleq2 2822 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑂 ∖ 𝑥) ∈ 𝑠 ↔ (𝑂 ∖ 𝑥) ∈ 𝑆)) | |
| 3 | 2 | raleqbi1dv 3321 | . . 3 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆)) |
| 4 | pweq 4594 | . . . 4 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
| 5 | eleq2 2822 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑥 ∈ 𝑆)) | |
| 6 | 5 | imbi2d 340 | . . . 4 ⊢ (𝑠 = 𝑆 → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆))) |
| 7 | 4, 6 | raleqbidv 3329 | . . 3 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆))) |
| 8 | 1, 3, 7 | 3anbi123d 1437 | . 2 ⊢ (𝑠 = 𝑆 → ((∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠)) ↔ (∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆)))) |
| 9 | isldsys.l | . 2 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
| 10 | 8, 9 | elrab2 3678 | 1 ⊢ (𝑆 ∈ 𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3419 ∖ cdif 3928 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4887 Disj wdisj 5090 class class class wbr 5123 ωcom 7869 ≼ cdom 8965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: pwldsys 34117 unelldsys 34118 sigaldsys 34119 ldsysgenld 34120 sigapildsyslem 34121 sigapildsys 34122 ldgenpisyslem1 34123 |
| Copyright terms: Public domain | W3C validator |