![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isldsys | Structured version Visualization version GIF version |
Description: The property of being a lambda-system or Dynkin system. Lambda-systems contain the empty set, are closed under complement, and closed under countable disjoint union. (Contributed by Thierry Arnoux, 13-Jun-2020.) |
Ref | Expression |
---|---|
isldsys.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
Ref | Expression |
---|---|
isldsys | ⊢ (𝑆 ∈ 𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2830 | . . 3 ⊢ (𝑠 = 𝑆 → (∅ ∈ 𝑠 ↔ ∅ ∈ 𝑆)) | |
2 | eleq2 2830 | . . . 4 ⊢ (𝑠 = 𝑆 → ((𝑂 ∖ 𝑥) ∈ 𝑠 ↔ (𝑂 ∖ 𝑥) ∈ 𝑆)) | |
3 | 2 | raleqbi1dv 3338 | . . 3 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ↔ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆)) |
4 | pweq 4622 | . . . 4 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
5 | eleq2 2830 | . . . . 5 ⊢ (𝑠 = 𝑆 → (∪ 𝑥 ∈ 𝑠 ↔ ∪ 𝑥 ∈ 𝑆)) | |
6 | 5 | imbi2d 340 | . . . 4 ⊢ (𝑠 = 𝑆 → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠) ↔ ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆))) |
7 | 4, 6 | raleqbidv 3346 | . . 3 ⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠) ↔ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆))) |
8 | 1, 3, 7 | 3anbi123d 1437 | . 2 ⊢ (𝑠 = 𝑆 → ((∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠)) ↔ (∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆)))) |
9 | isldsys.l | . 2 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
10 | 8, 9 | elrab2 3701 | 1 ⊢ (𝑆 ∈ 𝐿 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (𝑂 ∖ 𝑥) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝒫 𝑆((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑆)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∀wral 3061 {crab 3436 ∖ cdif 3963 ∅c0 4342 𝒫 cpw 4608 ∪ cuni 4915 Disj wdisj 5118 class class class wbr 5151 ωcom 7894 ≼ cdom 8991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-ss 3983 df-pw 4610 |
This theorem is referenced by: pwldsys 34152 unelldsys 34153 sigaldsys 34154 ldsysgenld 34155 sigapildsyslem 34156 sigapildsys 34157 ldgenpisyslem1 34158 |
Copyright terms: Public domain | W3C validator |