Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsys Structured version   Visualization version   GIF version

Theorem sigapildsys 34128
Description: Sigma-algebra are exactly classes which are both lambda and pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigapildsys (sigAlgebra‘𝑂) = (𝑃𝐿)
Distinct variable groups:   𝑥,𝑠,𝑦   𝑥,𝐿,𝑦   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑃(𝑠)   𝐿(𝑠)   𝑂(𝑦)

Proof of Theorem sigapildsys
Dummy variables 𝑓 𝑖 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . 4 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
21sigapisys 34121 . . 3 (sigAlgebra‘𝑂) ⊆ 𝑃
3 dynkin.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
43sigaldsys 34125 . . 3 (sigAlgebra‘𝑂) ⊆ 𝐿
52, 4ssini 4193 . 2 (sigAlgebra‘𝑂) ⊆ (𝑃𝐿)
6 id 22 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (𝑃𝐿))
76elin1d 4157 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → 𝑡𝑃)
81ispisys 34118 . . . . . . . 8 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
97, 8sylib 218 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
109simpld 494 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ 𝒫 𝒫 𝑂)
1110elpwid 4562 . . . . 5 (𝑡 ∈ (𝑃𝐿) → 𝑡 ⊆ 𝒫 𝑂)
12 dif0 4331 . . . . . . 7 (𝑂 ∖ ∅) = 𝑂
136elin2d 4158 . . . . . . . . . . 11 (𝑡 ∈ (𝑃𝐿) → 𝑡𝐿)
143isldsys 34122 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1513, 14sylib 218 . . . . . . . . . 10 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1615simprd 495 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1716simp2d 1143 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
1816simp1d 1142 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → ∅ ∈ 𝑡)
19 difeq2 4073 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ∖ ∅))
20 eqidd 2730 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑡 = 𝑡)
2119, 20eleq12d 2822 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂 ∖ ∅) ∈ 𝑡))
2221rspcv 3575 . . . . . . . . 9 (∅ ∈ 𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2318, 22syl 17 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2417, 23mpd 15 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑂 ∖ ∅) ∈ 𝑡)
2512, 24eqeltrrid 2833 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑂𝑡)
26 unieq 4872 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
27 uni0 4889 . . . . . . . . . . . 12 ∅ = ∅
2826, 27eqtrdi 2780 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
2928adantl 481 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥 = ∅)
3018ad3antrrr 730 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∅ ∈ 𝑡)
3129, 30eqeltrd 2828 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥𝑡)
32 vex 3442 . . . . . . . . . . . . . 14 𝑥 ∈ V
33320sdom 9032 . . . . . . . . . . . . 13 (∅ ≺ 𝑥𝑥 ≠ ∅)
3433biimpri 228 . . . . . . . . . . . 12 (𝑥 ≠ ∅ → ∅ ≺ 𝑥)
3534adantl 481 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∅ ≺ 𝑥)
36 simplr 768 . . . . . . . . . . . 12 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ω)
37 nnenom 13905 . . . . . . . . . . . . 13 ℕ ≈ ω
3837ensymi 8936 . . . . . . . . . . . 12 ω ≈ ℕ
39 domentr 8945 . . . . . . . . . . . 12 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
4036, 38, 39sylancl 586 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ℕ)
41 fodomr 9052 . . . . . . . . . . 11 ((∅ ≺ 𝑥𝑥 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝑥)
4235, 40, 41syl2anc 584 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝑥)
43 fveq2 6826 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
4443iundisj 25465 . . . . . . . . . . . . 13 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
45 fofn 6742 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥𝑓 Fn ℕ)
46 fniunfv 7187 . . . . . . . . . . . . . . 15 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
48 forn 6743 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥 → ran 𝑓 = 𝑥)
4948unieqd 4874 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 ran 𝑓 = 𝑥)
5047, 49eqtrd 2764 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑥)
5144, 50eqtr3id 2778 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
5251adantl 481 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
53 fvex 6839 . . . . . . . . . . . . . 14 (𝑓𝑛) ∈ V
54 difexg 5271 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ V → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V)
5553, 54ax-mp 5 . . . . . . . . . . . . 13 ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V
5655dfiun3 5915 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
57 nfv 1914 . . . . . . . . . . . . . . . . . 18 𝑛((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
58 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑛𝑦
59 nfmpt1 5194 . . . . . . . . . . . . . . . . . . . 20 𝑛(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6059nfrn 5898 . . . . . . . . . . . . . . . . . . 19 𝑛ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6158, 60nfel 2906 . . . . . . . . . . . . . . . . . 18 𝑛 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6257, 61nfan 1899 . . . . . . . . . . . . . . . . 17 𝑛(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
63 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
64 nfv 1914 . . . . . . . . . . . . . . . . . . . . . 22 𝑖((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
65 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖𝑦
66 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖
67 nfcv 2891 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖(𝑓𝑛)
68 nfiu1 4980 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖 𝑖 ∈ (1..^𝑛)(𝑓𝑖)
6967, 68nfdif 4082 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7066, 69nfmpt 5193 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7170nfrn 5898 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7265, 71nfel 2906 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7364, 72nfan 1899 . . . . . . . . . . . . . . . . . . . . 21 𝑖(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
74 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑖 𝑛 ∈ ℕ
7573, 74nfan 1899 . . . . . . . . . . . . . . . . . . . 20 𝑖((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ)
7665, 69nfeq 2905 . . . . . . . . . . . . . . . . . . . 20 𝑖 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7775, 76nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑖(((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
786ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑡 ∈ (𝑃𝐿))
79 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥 ∈ 𝒫 𝑡)
8079ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 ∈ 𝒫 𝑡)
8180elpwid 4562 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥𝑡)
82 fof 6740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℕ–onto𝑥𝑓:ℕ⟶𝑥)
8382ad4antlr 733 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑓:ℕ⟶𝑥)
84 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑛 ∈ ℕ)
8583, 84ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑥)
8681, 85sseldd 3938 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑡)
87 fzofi 13899 . . . . . . . . . . . . . . . . . . . 20 (1..^𝑛) ∈ Fin
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ∈ Fin)
8981adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑥𝑡)
9083adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝑥)
91 fzossnn 13632 . . . . . . . . . . . . . . . . . . . . . . 23 (1..^𝑛) ⊆ ℕ
9291a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ⊆ ℕ)
9392sselda 3937 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑖 ∈ ℕ)
9490, 93ffvelcdmd 7023 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑥)
9589, 94sseldd 3938 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑡)
961, 3, 77, 78, 86, 88, 95sigapildsyslem 34127 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
9763, 96eqeltrd 2828 . . . . . . . . . . . . . . . . 17 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡)
98 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
99 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10099, 55elrnmpti 5908 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ↔ ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10198, 100sylib 218 . . . . . . . . . . . . . . . . 17 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10262, 97, 101r19.29af 3238 . . . . . . . . . . . . . . . 16 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦𝑡)
103102ex 412 . . . . . . . . . . . . . . 15 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡))
104103ssrdv 3943 . . . . . . . . . . . . . 14 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
105 nnex 12152 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
106105mptex 7163 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
107106rnex 7850 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
108 elpwg 4556 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V → (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡))
109107, 108ax-mp 5 . . . . . . . . . . . . . 14 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
110104, 109sylibr 234 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡)
11116simp3d 1144 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
112111ad4antr 732 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
113 nnct 13906 . . . . . . . . . . . . . . 15 ℕ ≼ ω
114 mptct 10451 . . . . . . . . . . . . . . 15 (ℕ ≼ ω → (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
115113, 114ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω
116 rnct 10438 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
117115, 116mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
11843iundisj2 25466 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
119 disjrnmpt 32547 . . . . . . . . . . . . . 14 (Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
120118, 119mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
121 breq1 5098 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑥 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω))
122 disjeq1 5069 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦))
123121, 122anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)))
124 unieq 4872 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
125124eleq1d 2813 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ( 𝑥𝑡 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
126123, 125imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
127126rspcv 3575 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 → (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
128127imp 406 . . . . . . . . . . . . . 14 ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
129128imp 406 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) ∧ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
130110, 112, 117, 120, 129syl22anc 838 . . . . . . . . . . . 12 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
13156, 130eqeltrid 2832 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
13252, 131eqeltrrd 2829 . . . . . . . . . 10 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥𝑡)
13342, 132exlimddv 1935 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥𝑡)
13431, 133pm2.61dane 3012 . . . . . . . 8 (((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) → 𝑥𝑡)
135134ex 412 . . . . . . 7 ((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) → (𝑥 ≼ ω → 𝑥𝑡))
136135ralrimiva 3121 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))
13725, 17, 1363jca 1128 . . . . 5 (𝑡 ∈ (𝑃𝐿) → (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))
13811, 137jca 511 . . . 4 (𝑡 ∈ (𝑃𝐿) → (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
139 vex 3442 . . . . 5 𝑡 ∈ V
140 issiga 34078 . . . . 5 (𝑡 ∈ V → (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))))
141139, 140ax-mp 5 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
142138, 141sylibr 234 . . 3 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (sigAlgebra‘𝑂))
143142ssriv 3941 . 2 (𝑃𝐿) ⊆ (sigAlgebra‘𝑂)
1445, 143eqssi 3954 1 (sigAlgebra‘𝑂) = (𝑃𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cdif 3902  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553   cuni 4861   ciun 4944  Disj wdisj 5062   class class class wbr 5095  cmpt 5176  ran crn 5624   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  ωcom 7806  cen 8876  cdom 8877  csdm 8878  Fincfn 8879  ficfi 9319  1c1 11029  cn 12146  ..^cfzo 13575  sigAlgebracsiga 34074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-siga 34075
This theorem is referenced by:  dynkin  34133
  Copyright terms: Public domain W3C validator