Step | Hyp | Ref
| Expression |
1 | | dynkin.p |
. . . 4
⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
2 | 1 | sigapisys 32132 |
. . 3
⊢
(sigAlgebra‘𝑂)
⊆ 𝑃 |
3 | | dynkin.l |
. . . 4
⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
4 | 3 | sigaldsys 32136 |
. . 3
⊢
(sigAlgebra‘𝑂)
⊆ 𝐿 |
5 | 2, 4 | ssini 4166 |
. 2
⊢
(sigAlgebra‘𝑂)
⊆ (𝑃 ∩ 𝐿) |
6 | | id 22 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ (𝑃 ∩ 𝐿)) |
7 | 6 | elin1d 4133 |
. . . . . . . 8
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ 𝑃) |
8 | 1 | ispisys 32129 |
. . . . . . . 8
⊢ (𝑡 ∈ 𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡)) |
9 | 7, 8 | sylib 217 |
. . . . . . 7
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡)) |
10 | 9 | simpld 495 |
. . . . . 6
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ 𝒫 𝒫 𝑂) |
11 | 10 | elpwid 4545 |
. . . . 5
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ⊆ 𝒫 𝑂) |
12 | | dif0 4307 |
. . . . . . 7
⊢ (𝑂 ∖ ∅) = 𝑂 |
13 | 6 | elin2d 4134 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ 𝐿) |
14 | 3 | isldsys 32133 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ 𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
15 | 13, 14 | sylib 217 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
16 | 15 | simprd 496 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡))) |
17 | 16 | simp2d 1142 |
. . . . . . . 8
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
18 | 16 | simp1d 1141 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → ∅ ∈ 𝑡) |
19 | | difeq2 4052 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑂 ∖ 𝑥) = (𝑂 ∖ ∅)) |
20 | | eqidd 2740 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → 𝑡 = 𝑡) |
21 | 19, 20 | eleq12d 2834 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝑂 ∖ 𝑥) ∈ 𝑡 ↔ (𝑂 ∖ ∅) ∈ 𝑡)) |
22 | 21 | rspcv 3558 |
. . . . . . . . 9
⊢ (∅
∈ 𝑡 →
(∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡)) |
23 | 18, 22 | syl 17 |
. . . . . . . 8
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡)) |
24 | 17, 23 | mpd 15 |
. . . . . . 7
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑂 ∖ ∅) ∈ 𝑡) |
25 | 12, 24 | eqeltrrid 2845 |
. . . . . 6
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑂 ∈ 𝑡) |
26 | | unieq 4851 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) |
27 | | uni0 4870 |
. . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ |
28 | 26, 27 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∅) |
29 | 28 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∪ 𝑥 =
∅) |
30 | 18 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∅ ∈ 𝑡) |
31 | 29, 30 | eqeltrd 2840 |
. . . . . . . . 9
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∪ 𝑥
∈ 𝑡) |
32 | | vex 3437 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
33 | 32 | 0sdom 8903 |
. . . . . . . . . . . . 13
⊢ (∅
≺ 𝑥 ↔ 𝑥 ≠ ∅) |
34 | 33 | biimpri 227 |
. . . . . . . . . . . 12
⊢ (𝑥 ≠ ∅ → ∅
≺ 𝑥) |
35 | 34 | adantl 482 |
. . . . . . . . . . 11
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∅ ≺ 𝑥) |
36 | | simplr 766 |
. . . . . . . . . . . 12
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ω) |
37 | | nnenom 13709 |
. . . . . . . . . . . . 13
⊢ ℕ
≈ ω |
38 | 37 | ensymi 8799 |
. . . . . . . . . . . 12
⊢ ω
≈ ℕ |
39 | | domentr 8808 |
. . . . . . . . . . . 12
⊢ ((𝑥 ≼ ω ∧ ω
≈ ℕ) → 𝑥
≼ ℕ) |
40 | 36, 38, 39 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ℕ) |
41 | | fodomr 8924 |
. . . . . . . . . . 11
⊢ ((∅
≺ 𝑥 ∧ 𝑥 ≼ ℕ) →
∃𝑓 𝑓:ℕ–onto→𝑥) |
42 | 35, 40, 41 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝑥) |
43 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑖 → (𝑓‘𝑛) = (𝑓‘𝑖)) |
44 | 43 | iundisj 24721 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ 𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) |
45 | | fofn 6699 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–onto→𝑥 → 𝑓 Fn ℕ) |
46 | | fniunfv 7129 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn ℕ → ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ ran 𝑓) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–onto→𝑥 → ∪
𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ ran 𝑓) |
48 | | forn 6700 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–onto→𝑥 → ran 𝑓 = 𝑥) |
49 | 48 | unieqd 4854 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–onto→𝑥 → ∪ ran
𝑓 = ∪ 𝑥) |
50 | 47, 49 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ (𝑓:ℕ–onto→𝑥 → ∪
𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ 𝑥) |
51 | 44, 50 | eqtr3id 2793 |
. . . . . . . . . . . 12
⊢ (𝑓:ℕ–onto→𝑥 → ∪
𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) = ∪ 𝑥) |
52 | 51 | adantl 482 |
. . . . . . . . . . 11
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∪
𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) = ∪ 𝑥) |
53 | | fvex 6796 |
. . . . . . . . . . . . . 14
⊢ (𝑓‘𝑛) ∈ V |
54 | | difexg 5252 |
. . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑛) ∈ V → ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) ∈ V) |
55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) ∈ V |
56 | 55 | dfiun3 5878 |
. . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) = ∪ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
57 | | nfv 1918 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) |
58 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛𝑦 |
59 | | nfmpt1 5183 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
60 | 59 | nfrn 5864 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
61 | 58, 60 | nfel 2922 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
62 | 57, 61 | nfan 1903 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) |
63 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
64 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑖((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) |
65 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑖𝑦 |
66 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑖ℕ |
67 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑖(𝑓‘𝑛) |
68 | | nfiu1 4959 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑖∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖) |
69 | 67, 68 | nfdif 4061 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑖((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) |
70 | 66, 69 | nfmpt 5182 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑖(𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
71 | 70 | nfrn 5864 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑖ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
72 | 65, 71 | nfel 2922 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑖 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
73 | 64, 72 | nfan 1903 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑖(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) |
74 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑖 𝑛 ∈ ℕ |
75 | 73, 74 | nfan 1903 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑖((((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) |
76 | 65, 69 | nfeq 2921 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑖 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) |
77 | 75, 76 | nfan 1903 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑖(((((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
78 | 6 | ad7antr 735 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑡 ∈ (𝑃 ∩ 𝐿)) |
79 | | simp-4r 781 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → 𝑥 ∈ 𝒫 𝑡) |
80 | 79 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑥 ∈ 𝒫 𝑡) |
81 | 80 | elpwid 4545 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑥 ⊆ 𝑡) |
82 | | fof 6697 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓:ℕ–onto→𝑥 → 𝑓:ℕ⟶𝑥) |
83 | 82 | ad4antlr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑓:ℕ⟶𝑥) |
84 | | simplr 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑛 ∈ ℕ) |
85 | 83, 84 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (𝑓‘𝑛) ∈ 𝑥) |
86 | 81, 85 | sseldd 3923 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (𝑓‘𝑛) ∈ 𝑡) |
87 | | fzofi 13703 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1..^𝑛) ∈
Fin |
88 | 87 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (1..^𝑛) ∈ Fin) |
89 | 81 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑥 ⊆ 𝑡) |
90 | 83 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝑥) |
91 | | fzossnn 13445 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(1..^𝑛) ⊆
ℕ |
92 | 91 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (1..^𝑛) ⊆ ℕ) |
93 | 92 | sselda 3922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑖 ∈ ℕ) |
94 | 90, 93 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓‘𝑖) ∈ 𝑥) |
95 | 89, 94 | sseldd 3923 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓‘𝑖) ∈ 𝑡) |
96 | 1, 3, 77, 78, 86, 88, 95 | sigapildsyslem 32138 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) ∈ 𝑡) |
97 | 63, 96 | eqeltrd 2840 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑦 ∈ 𝑡) |
98 | | simpr 485 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) → 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) |
99 | | eqid 2739 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) = (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
100 | 99, 55 | elrnmpti 5872 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ↔ ∃𝑛 ∈ ℕ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
101 | 98, 100 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) → ∃𝑛 ∈ ℕ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) |
102 | 62, 97, 101 | r19.29af 3263 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) → 𝑦 ∈ 𝑡) |
103 | 102 | ex 413 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑦 ∈ 𝑡)) |
104 | 103 | ssrdv 3928 |
. . . . . . . . . . . . . 14
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ⊆ 𝑡) |
105 | | nnex 11988 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ
∈ V |
106 | 105 | mptex 7108 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ V |
107 | 106 | rnex 7768 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ V |
108 | | elpwg 4537 |
. . . . . . . . . . . . . . 15
⊢ (ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ V → (ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ⊆ 𝑡)) |
109 | 107, 108 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ⊆ 𝑡) |
110 | 104, 109 | sylibr 233 |
. . . . . . . . . . . . 13
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡) |
111 | 16 | simp3d 1143 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
112 | 111 | ad4antr 729 |
. . . . . . . . . . . . 13
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
113 | | nnct 13710 |
. . . . . . . . . . . . . . 15
⊢ ℕ
≼ ω |
114 | | mptct 10303 |
. . . . . . . . . . . . . . 15
⊢ (ℕ
≼ ω → (𝑛
∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω) |
115 | 113, 114 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω |
116 | | rnct 10290 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω → ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω) |
117 | 115, 116 | mp1i 13 |
. . . . . . . . . . . . 13
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω) |
118 | 43 | iundisj2 24722 |
. . . . . . . . . . . . . 14
⊢
Disj 𝑛 ∈
ℕ ((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) |
119 | | disjrnmpt 30933 |
. . . . . . . . . . . . . 14
⊢
(Disj 𝑛
∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) |
120 | 118, 119 | mp1i 13 |
. . . . . . . . . . . . 13
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) |
121 | | breq1 5078 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (𝑥 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω)) |
122 | | disjeq1 5047 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦)) |
123 | 121, 122 | anbi12d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦))) |
124 | | unieq 4851 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → ∪ 𝑥 = ∪
ran (𝑛 ∈ ℕ
↦ ((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) |
125 | 124 | eleq1d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (∪
𝑥 ∈ 𝑡 ↔ ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡)) |
126 | 123, 125 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡) ↔ ((ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡))) |
127 | 126 | rspcv 3558 |
. . . . . . . . . . . . . . 15
⊢ (ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 → (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡))) |
128 | 127 | imp 407 |
. . . . . . . . . . . . . 14
⊢ ((ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡)) |
129 | 128 | imp 407 |
. . . . . . . . . . . . 13
⊢ (((ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) ∧ (ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦)) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡) |
130 | 110, 112,
117, 120, 129 | syl22anc 836 |
. . . . . . . . . . . 12
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡) |
131 | 56, 130 | eqeltrid 2844 |
. . . . . . . . . . 11
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∪
𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) ∈ 𝑡) |
132 | 52, 131 | eqeltrrd 2841 |
. . . . . . . . . 10
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∪ 𝑥 ∈ 𝑡) |
133 | 42, 132 | exlimddv 1939 |
. . . . . . . . 9
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∪ 𝑥
∈ 𝑡) |
134 | 31, 133 | pm2.61dane 3033 |
. . . . . . . 8
⊢ (((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) → ∪ 𝑥
∈ 𝑡) |
135 | 134 | ex 413 |
. . . . . . 7
⊢ ((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) → (𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡)) |
136 | 135 | ralrimiva 3104 |
. . . . . 6
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡)) |
137 | 25, 17, 136 | 3jca 1127 |
. . . . 5
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑂 ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡))) |
138 | 11, 137 | jca 512 |
. . . 4
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡)))) |
139 | | vex 3437 |
. . . . 5
⊢ 𝑡 ∈ V |
140 | | issiga 32089 |
. . . . 5
⊢ (𝑡 ∈ V → (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡))))) |
141 | 139, 140 | ax-mp 5 |
. . . 4
⊢ (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡)))) |
142 | 138, 141 | sylibr 233 |
. . 3
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ (sigAlgebra‘𝑂)) |
143 | 142 | ssriv 3926 |
. 2
⊢ (𝑃 ∩ 𝐿) ⊆ (sigAlgebra‘𝑂) |
144 | 5, 143 | eqssi 3938 |
1
⊢
(sigAlgebra‘𝑂)
= (𝑃 ∩ 𝐿) |