Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsys Structured version   Visualization version   GIF version

Theorem sigapildsys 31423
Description: Sigma-algebra are exactly classes which are both lambda and pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigapildsys (sigAlgebra‘𝑂) = (𝑃𝐿)
Distinct variable groups:   𝑥,𝑠,𝑦   𝑥,𝐿,𝑦   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑃(𝑠)   𝐿(𝑠)   𝑂(𝑦)

Proof of Theorem sigapildsys
Dummy variables 𝑓 𝑖 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . 4 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
21sigapisys 31416 . . 3 (sigAlgebra‘𝑂) ⊆ 𝑃
3 dynkin.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
43sigaldsys 31420 . . 3 (sigAlgebra‘𝑂) ⊆ 𝐿
52, 4ssini 4210 . 2 (sigAlgebra‘𝑂) ⊆ (𝑃𝐿)
6 id 22 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (𝑃𝐿))
76elin1d 4177 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → 𝑡𝑃)
81ispisys 31413 . . . . . . . 8 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
97, 8sylib 220 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
109simpld 497 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ 𝒫 𝒫 𝑂)
1110elpwid 4552 . . . . 5 (𝑡 ∈ (𝑃𝐿) → 𝑡 ⊆ 𝒫 𝑂)
12 dif0 4334 . . . . . . 7 (𝑂 ∖ ∅) = 𝑂
136elin2d 4178 . . . . . . . . . . 11 (𝑡 ∈ (𝑃𝐿) → 𝑡𝐿)
143isldsys 31417 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1513, 14sylib 220 . . . . . . . . . 10 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1615simprd 498 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1716simp2d 1139 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
1816simp1d 1138 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → ∅ ∈ 𝑡)
19 difeq2 4095 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ∖ ∅))
20 eqidd 2824 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑡 = 𝑡)
2119, 20eleq12d 2909 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂 ∖ ∅) ∈ 𝑡))
2221rspcv 3620 . . . . . . . . 9 (∅ ∈ 𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2318, 22syl 17 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2417, 23mpd 15 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑂 ∖ ∅) ∈ 𝑡)
2512, 24eqeltrrid 2920 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑂𝑡)
26 unieq 4851 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
27 uni0 4868 . . . . . . . . . . . 12 ∅ = ∅
2826, 27syl6eq 2874 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
2928adantl 484 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥 = ∅)
3018ad3antrrr 728 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∅ ∈ 𝑡)
3129, 30eqeltrd 2915 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥𝑡)
32 vex 3499 . . . . . . . . . . . . . 14 𝑥 ∈ V
33320sdom 8650 . . . . . . . . . . . . 13 (∅ ≺ 𝑥𝑥 ≠ ∅)
3433biimpri 230 . . . . . . . . . . . 12 (𝑥 ≠ ∅ → ∅ ≺ 𝑥)
3534adantl 484 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∅ ≺ 𝑥)
36 simplr 767 . . . . . . . . . . . 12 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ω)
37 nnenom 13351 . . . . . . . . . . . . 13 ℕ ≈ ω
3837ensymi 8561 . . . . . . . . . . . 12 ω ≈ ℕ
39 domentr 8570 . . . . . . . . . . . 12 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
4036, 38, 39sylancl 588 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ℕ)
41 fodomr 8670 . . . . . . . . . . 11 ((∅ ≺ 𝑥𝑥 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝑥)
4235, 40, 41syl2anc 586 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝑥)
43 fveq2 6672 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
4443iundisj 24151 . . . . . . . . . . . . 13 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
45 fofn 6594 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥𝑓 Fn ℕ)
46 fniunfv 7008 . . . . . . . . . . . . . . 15 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
48 forn 6595 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥 → ran 𝑓 = 𝑥)
4948unieqd 4854 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 ran 𝑓 = 𝑥)
5047, 49eqtrd 2858 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑥)
5144, 50syl5eqr 2872 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
5251adantl 484 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
53 fvex 6685 . . . . . . . . . . . . . 14 (𝑓𝑛) ∈ V
54 difexg 5233 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ V → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V)
5553, 54ax-mp 5 . . . . . . . . . . . . 13 ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V
5655dfiun3 5839 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
57 nfv 1915 . . . . . . . . . . . . . . . . . 18 𝑛((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
58 nfcv 2979 . . . . . . . . . . . . . . . . . . 19 𝑛𝑦
59 nfmpt1 5166 . . . . . . . . . . . . . . . . . . . 20 𝑛(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6059nfrn 5826 . . . . . . . . . . . . . . . . . . 19 𝑛ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6158, 60nfel 2994 . . . . . . . . . . . . . . . . . 18 𝑛 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6257, 61nfan 1900 . . . . . . . . . . . . . . . . 17 𝑛(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
63 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
64 nfv 1915 . . . . . . . . . . . . . . . . . . . . . 22 𝑖((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
65 nfcv 2979 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖𝑦
66 nfcv 2979 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖
67 nfcv 2979 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖(𝑓𝑛)
68 nfiu1 4955 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖 𝑖 ∈ (1..^𝑛)(𝑓𝑖)
6967, 68nfdif 4104 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7066, 69nfmpt 5165 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7170nfrn 5826 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7265, 71nfel 2994 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7364, 72nfan 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑖(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
74 nfv 1915 . . . . . . . . . . . . . . . . . . . . 21 𝑖 𝑛 ∈ ℕ
7573, 74nfan 1900 . . . . . . . . . . . . . . . . . . . 20 𝑖((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ)
7665, 69nfeq 2993 . . . . . . . . . . . . . . . . . . . 20 𝑖 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7775, 76nfan 1900 . . . . . . . . . . . . . . . . . . 19 𝑖(((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
786ad7antr 736 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑡 ∈ (𝑃𝐿))
79 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥 ∈ 𝒫 𝑡)
8079ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 ∈ 𝒫 𝑡)
8180elpwid 4552 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥𝑡)
82 fof 6592 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℕ–onto𝑥𝑓:ℕ⟶𝑥)
8382ad4antlr 731 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑓:ℕ⟶𝑥)
84 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑛 ∈ ℕ)
8583, 84ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑥)
8681, 85sseldd 3970 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑡)
87 fzofi 13345 . . . . . . . . . . . . . . . . . . . 20 (1..^𝑛) ∈ Fin
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ∈ Fin)
8981adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑥𝑡)
9083adantr 483 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝑥)
91 fzossnn 13089 . . . . . . . . . . . . . . . . . . . . . . 23 (1..^𝑛) ⊆ ℕ
9291a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ⊆ ℕ)
9392sselda 3969 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑖 ∈ ℕ)
9490, 93ffvelrnd 6854 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑥)
9589, 94sseldd 3970 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑡)
961, 3, 77, 78, 86, 88, 95sigapildsyslem 31422 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
9763, 96eqeltrd 2915 . . . . . . . . . . . . . . . . 17 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡)
98 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
99 eqid 2823 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10099, 55elrnmpti 5834 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ↔ ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10198, 100sylib 220 . . . . . . . . . . . . . . . . 17 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10262, 97, 101r19.29af 3333 . . . . . . . . . . . . . . . 16 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦𝑡)
103102ex 415 . . . . . . . . . . . . . . 15 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡))
104103ssrdv 3975 . . . . . . . . . . . . . 14 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
105 nnex 11646 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
106105mptex 6988 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
107106rnex 7619 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
108 elpwg 4544 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V → (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡))
109107, 108ax-mp 5 . . . . . . . . . . . . . 14 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
110104, 109sylibr 236 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡)
11116simp3d 1140 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
112111ad4antr 730 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
113 nnct 13352 . . . . . . . . . . . . . . 15 ℕ ≼ ω
114 mptct 9962 . . . . . . . . . . . . . . 15 (ℕ ≼ ω → (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
115113, 114ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω
116 rnct 9949 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
117115, 116mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
11843iundisj2 24152 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
119 disjrnmpt 30337 . . . . . . . . . . . . . 14 (Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
120118, 119mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
121 breq1 5071 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑥 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω))
122 disjeq1 5040 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦))
123121, 122anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)))
124 unieq 4851 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
125124eleq1d 2899 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ( 𝑥𝑡 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
126123, 125imbi12d 347 . . . . . . . . . . . . . . . 16 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
127126rspcv 3620 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 → (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
128127imp 409 . . . . . . . . . . . . . 14 ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
129128imp 409 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) ∧ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
130110, 112, 117, 120, 129syl22anc 836 . . . . . . . . . . . 12 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
13156, 130eqeltrid 2919 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
13252, 131eqeltrrd 2916 . . . . . . . . . 10 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥𝑡)
13342, 132exlimddv 1936 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥𝑡)
13431, 133pm2.61dane 3106 . . . . . . . 8 (((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) → 𝑥𝑡)
135134ex 415 . . . . . . 7 ((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) → (𝑥 ≼ ω → 𝑥𝑡))
136135ralrimiva 3184 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))
13725, 17, 1363jca 1124 . . . . 5 (𝑡 ∈ (𝑃𝐿) → (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))
13811, 137jca 514 . . . 4 (𝑡 ∈ (𝑃𝐿) → (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
139 vex 3499 . . . . 5 𝑡 ∈ V
140 issiga 31373 . . . . 5 (𝑡 ∈ V → (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))))
141139, 140ax-mp 5 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
142138, 141sylibr 236 . . 3 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (sigAlgebra‘𝑂))
143142ssriv 3973 . 2 (𝑃𝐿) ⊆ (sigAlgebra‘𝑂)
1445, 143eqssi 3985 1 (sigAlgebra‘𝑂) = (𝑃𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   cuni 4840   ciun 4921  Disj wdisj 5033   class class class wbr 5068  cmpt 5148  ran crn 5558   Fn wfn 6352  wf 6353  ontowfo 6355  cfv 6357  (class class class)co 7158  ωcom 7582  cen 8508  cdom 8509  csdm 8510  Fincfn 8511  ficfi 8876  1c1 10540  cn 11640  ..^cfzo 13036  sigAlgebracsiga 31369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-siga 31370
This theorem is referenced by:  dynkin  31428
  Copyright terms: Public domain W3C validator