Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsys Structured version   Visualization version   GIF version

Theorem sigapildsys 32116
Description: Sigma-algebra are exactly classes which are both lambda and pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigapildsys (sigAlgebra‘𝑂) = (𝑃𝐿)
Distinct variable groups:   𝑥,𝑠,𝑦   𝑥,𝐿,𝑦   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑃(𝑠)   𝐿(𝑠)   𝑂(𝑦)

Proof of Theorem sigapildsys
Dummy variables 𝑓 𝑖 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . 4 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
21sigapisys 32109 . . 3 (sigAlgebra‘𝑂) ⊆ 𝑃
3 dynkin.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
43sigaldsys 32113 . . 3 (sigAlgebra‘𝑂) ⊆ 𝐿
52, 4ssini 4166 . 2 (sigAlgebra‘𝑂) ⊆ (𝑃𝐿)
6 id 22 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (𝑃𝐿))
76elin1d 4132 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → 𝑡𝑃)
81ispisys 32106 . . . . . . . 8 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
97, 8sylib 217 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
109simpld 495 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ 𝒫 𝒫 𝑂)
1110elpwid 4545 . . . . 5 (𝑡 ∈ (𝑃𝐿) → 𝑡 ⊆ 𝒫 𝑂)
12 dif0 4307 . . . . . . 7 (𝑂 ∖ ∅) = 𝑂
136elin2d 4133 . . . . . . . . . . 11 (𝑡 ∈ (𝑃𝐿) → 𝑡𝐿)
143isldsys 32110 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1513, 14sylib 217 . . . . . . . . . 10 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1615simprd 496 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1716simp2d 1142 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
1816simp1d 1141 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → ∅ ∈ 𝑡)
19 difeq2 4051 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ∖ ∅))
20 eqidd 2739 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑡 = 𝑡)
2119, 20eleq12d 2833 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂 ∖ ∅) ∈ 𝑡))
2221rspcv 3555 . . . . . . . . 9 (∅ ∈ 𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2318, 22syl 17 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2417, 23mpd 15 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑂 ∖ ∅) ∈ 𝑡)
2512, 24eqeltrrid 2844 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑂𝑡)
26 unieq 4851 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
27 uni0 4870 . . . . . . . . . . . 12 ∅ = ∅
2826, 27eqtrdi 2794 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
2928adantl 482 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥 = ∅)
3018ad3antrrr 727 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∅ ∈ 𝑡)
3129, 30eqeltrd 2839 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥𝑡)
32 vex 3434 . . . . . . . . . . . . . 14 𝑥 ∈ V
33320sdom 8882 . . . . . . . . . . . . 13 (∅ ≺ 𝑥𝑥 ≠ ∅)
3433biimpri 227 . . . . . . . . . . . 12 (𝑥 ≠ ∅ → ∅ ≺ 𝑥)
3534adantl 482 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∅ ≺ 𝑥)
36 simplr 766 . . . . . . . . . . . 12 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ω)
37 nnenom 13688 . . . . . . . . . . . . 13 ℕ ≈ ω
3837ensymi 8778 . . . . . . . . . . . 12 ω ≈ ℕ
39 domentr 8787 . . . . . . . . . . . 12 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
4036, 38, 39sylancl 586 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ℕ)
41 fodomr 8903 . . . . . . . . . . 11 ((∅ ≺ 𝑥𝑥 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝑥)
4235, 40, 41syl2anc 584 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝑥)
43 fveq2 6767 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
4443iundisj 24700 . . . . . . . . . . . . 13 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
45 fofn 6683 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥𝑓 Fn ℕ)
46 fniunfv 7113 . . . . . . . . . . . . . . 15 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
48 forn 6684 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥 → ran 𝑓 = 𝑥)
4948unieqd 4854 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 ran 𝑓 = 𝑥)
5047, 49eqtrd 2778 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑥)
5144, 50eqtr3id 2792 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
5251adantl 482 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
53 fvex 6780 . . . . . . . . . . . . . 14 (𝑓𝑛) ∈ V
54 difexg 5250 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ V → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V)
5553, 54ax-mp 5 . . . . . . . . . . . . 13 ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V
5655dfiun3 5869 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
57 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑛((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
58 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑛𝑦
59 nfmpt1 5182 . . . . . . . . . . . . . . . . . . . 20 𝑛(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6059nfrn 5855 . . . . . . . . . . . . . . . . . . 19 𝑛ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6158, 60nfel 2921 . . . . . . . . . . . . . . . . . 18 𝑛 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6257, 61nfan 1902 . . . . . . . . . . . . . . . . 17 𝑛(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
63 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
64 nfv 1917 . . . . . . . . . . . . . . . . . . . . . 22 𝑖((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
65 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖𝑦
66 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖
67 nfcv 2907 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖(𝑓𝑛)
68 nfiu1 4959 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖 𝑖 ∈ (1..^𝑛)(𝑓𝑖)
6967, 68nfdif 4060 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7066, 69nfmpt 5181 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7170nfrn 5855 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7265, 71nfel 2921 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7364, 72nfan 1902 . . . . . . . . . . . . . . . . . . . . 21 𝑖(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
74 nfv 1917 . . . . . . . . . . . . . . . . . . . . 21 𝑖 𝑛 ∈ ℕ
7573, 74nfan 1902 . . . . . . . . . . . . . . . . . . . 20 𝑖((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ)
7665, 69nfeq 2920 . . . . . . . . . . . . . . . . . . . 20 𝑖 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7775, 76nfan 1902 . . . . . . . . . . . . . . . . . . 19 𝑖(((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
786ad7antr 735 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑡 ∈ (𝑃𝐿))
79 simp-4r 781 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥 ∈ 𝒫 𝑡)
8079ad3antrrr 727 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 ∈ 𝒫 𝑡)
8180elpwid 4545 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥𝑡)
82 fof 6681 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℕ–onto𝑥𝑓:ℕ⟶𝑥)
8382ad4antlr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑓:ℕ⟶𝑥)
84 simplr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑛 ∈ ℕ)
8583, 84ffvelrnd 6955 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑥)
8681, 85sseldd 3922 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑡)
87 fzofi 13682 . . . . . . . . . . . . . . . . . . . 20 (1..^𝑛) ∈ Fin
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ∈ Fin)
8981adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑥𝑡)
9083adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝑥)
91 fzossnn 13424 . . . . . . . . . . . . . . . . . . . . . . 23 (1..^𝑛) ⊆ ℕ
9291a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ⊆ ℕ)
9392sselda 3921 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑖 ∈ ℕ)
9490, 93ffvelrnd 6955 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑥)
9589, 94sseldd 3922 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑡)
961, 3, 77, 78, 86, 88, 95sigapildsyslem 32115 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
9763, 96eqeltrd 2839 . . . . . . . . . . . . . . . . 17 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡)
98 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
99 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10099, 55elrnmpti 5863 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ↔ ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10198, 100sylib 217 . . . . . . . . . . . . . . . . 17 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10262, 97, 101r19.29af 3260 . . . . . . . . . . . . . . . 16 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦𝑡)
103102ex 413 . . . . . . . . . . . . . . 15 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡))
104103ssrdv 3927 . . . . . . . . . . . . . 14 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
105 nnex 11967 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
106105mptex 7092 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
107106rnex 7750 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
108 elpwg 4537 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V → (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡))
109107, 108ax-mp 5 . . . . . . . . . . . . . 14 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
110104, 109sylibr 233 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡)
11116simp3d 1143 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
112111ad4antr 729 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
113 nnct 13689 . . . . . . . . . . . . . . 15 ℕ ≼ ω
114 mptct 10282 . . . . . . . . . . . . . . 15 (ℕ ≼ ω → (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
115113, 114ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω
116 rnct 10269 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
117115, 116mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
11843iundisj2 24701 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
119 disjrnmpt 30910 . . . . . . . . . . . . . 14 (Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
120118, 119mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
121 breq1 5077 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑥 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω))
122 disjeq1 5046 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦))
123121, 122anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)))
124 unieq 4851 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
125124eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ( 𝑥𝑡 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
126123, 125imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
127126rspcv 3555 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 → (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
128127imp 407 . . . . . . . . . . . . . 14 ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
129128imp 407 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) ∧ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
130110, 112, 117, 120, 129syl22anc 836 . . . . . . . . . . . 12 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
13156, 130eqeltrid 2843 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
13252, 131eqeltrrd 2840 . . . . . . . . . 10 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥𝑡)
13342, 132exlimddv 1938 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥𝑡)
13431, 133pm2.61dane 3032 . . . . . . . 8 (((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) → 𝑥𝑡)
135134ex 413 . . . . . . 7 ((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) → (𝑥 ≼ ω → 𝑥𝑡))
136135ralrimiva 3113 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))
13725, 17, 1363jca 1127 . . . . 5 (𝑡 ∈ (𝑃𝐿) → (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))
13811, 137jca 512 . . . 4 (𝑡 ∈ (𝑃𝐿) → (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
139 vex 3434 . . . . 5 𝑡 ∈ V
140 issiga 32066 . . . . 5 (𝑡 ∈ V → (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))))
141139, 140ax-mp 5 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
142138, 141sylibr 233 . . 3 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (sigAlgebra‘𝑂))
143142ssriv 3925 . 2 (𝑃𝐿) ⊆ (sigAlgebra‘𝑂)
1445, 143eqssi 3937 1 (sigAlgebra‘𝑂) = (𝑃𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3430  cdif 3884  cin 3886  wss 3887  c0 4257  𝒫 cpw 4534   cuni 4840   ciun 4925  Disj wdisj 5039   class class class wbr 5074  cmpt 5157  ran crn 5586   Fn wfn 6422  wf 6423  ontowfo 6425  cfv 6427  (class class class)co 7268  ωcom 7703  cen 8718  cdom 8719  csdm 8720  Fincfn 8721  ficfi 9157  1c1 10860  cn 11961  ..^cfzo 13370  sigAlgebracsiga 32062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-ac2 10207  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-2o 8286  df-er 8486  df-map 8605  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9647  df-card 9685  df-acn 9688  df-ac 9860  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-nn 11962  df-n0 12222  df-z 12308  df-uz 12571  df-fz 13228  df-fzo 13371  df-siga 32063
This theorem is referenced by:  dynkin  32121
  Copyright terms: Public domain W3C validator