| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dynkin.p | . . . 4
⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | 
| 2 | 1 | sigapisys 34157 | . . 3
⊢
(sigAlgebra‘𝑂)
⊆ 𝑃 | 
| 3 |  | dynkin.l | . . . 4
⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | 
| 4 | 3 | sigaldsys 34161 | . . 3
⊢
(sigAlgebra‘𝑂)
⊆ 𝐿 | 
| 5 | 2, 4 | ssini 4239 | . 2
⊢
(sigAlgebra‘𝑂)
⊆ (𝑃 ∩ 𝐿) | 
| 6 |  | id 22 | . . . . . . . . 9
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ (𝑃 ∩ 𝐿)) | 
| 7 | 6 | elin1d 4203 | . . . . . . . 8
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ 𝑃) | 
| 8 | 1 | ispisys 34154 | . . . . . . . 8
⊢ (𝑡 ∈ 𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡)) | 
| 9 | 7, 8 | sylib 218 | . . . . . . 7
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡)) | 
| 10 | 9 | simpld 494 | . . . . . 6
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ 𝒫 𝒫 𝑂) | 
| 11 | 10 | elpwid 4608 | . . . . 5
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ⊆ 𝒫 𝑂) | 
| 12 |  | dif0 4377 | . . . . . . 7
⊢ (𝑂 ∖ ∅) = 𝑂 | 
| 13 | 6 | elin2d 4204 | . . . . . . . . . . 11
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ 𝐿) | 
| 14 | 3 | isldsys 34158 | . . . . . . . . . . 11
⊢ (𝑡 ∈ 𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) | 
| 15 | 13, 14 | sylib 218 | . . . . . . . . . 10
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) | 
| 16 | 15 | simprd 495 | . . . . . . . . 9
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡))) | 
| 17 | 16 | simp2d 1143 | . . . . . . . 8
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) | 
| 18 | 16 | simp1d 1142 | . . . . . . . . 9
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → ∅ ∈ 𝑡) | 
| 19 |  | difeq2 4119 | . . . . . . . . . . 11
⊢ (𝑥 = ∅ → (𝑂 ∖ 𝑥) = (𝑂 ∖ ∅)) | 
| 20 |  | eqidd 2737 | . . . . . . . . . . 11
⊢ (𝑥 = ∅ → 𝑡 = 𝑡) | 
| 21 | 19, 20 | eleq12d 2834 | . . . . . . . . . 10
⊢ (𝑥 = ∅ → ((𝑂 ∖ 𝑥) ∈ 𝑡 ↔ (𝑂 ∖ ∅) ∈ 𝑡)) | 
| 22 | 21 | rspcv 3617 | . . . . . . . . 9
⊢ (∅
∈ 𝑡 →
(∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡)) | 
| 23 | 18, 22 | syl 17 | . . . . . . . 8
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡)) | 
| 24 | 17, 23 | mpd 15 | . . . . . . 7
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑂 ∖ ∅) ∈ 𝑡) | 
| 25 | 12, 24 | eqeltrrid 2845 | . . . . . 6
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑂 ∈ 𝑡) | 
| 26 |  | unieq 4917 | . . . . . . . . . . . 12
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∪ ∅) | 
| 27 |  | uni0 4934 | . . . . . . . . . . . 12
⊢ ∪ ∅ = ∅ | 
| 28 | 26, 27 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ (𝑥 = ∅ → ∪ 𝑥 =
∅) | 
| 29 | 28 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∪ 𝑥 =
∅) | 
| 30 | 18 | ad3antrrr 730 | . . . . . . . . . 10
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∅ ∈ 𝑡) | 
| 31 | 29, 30 | eqeltrd 2840 | . . . . . . . . 9
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∪ 𝑥
∈ 𝑡) | 
| 32 |  | vex 3483 | . . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V | 
| 33 | 32 | 0sdom 9148 | . . . . . . . . . . . . 13
⊢ (∅
≺ 𝑥 ↔ 𝑥 ≠ ∅) | 
| 34 | 33 | biimpri 228 | . . . . . . . . . . . 12
⊢ (𝑥 ≠ ∅ → ∅
≺ 𝑥) | 
| 35 | 34 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∅ ≺ 𝑥) | 
| 36 |  | simplr 768 | . . . . . . . . . . . 12
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ω) | 
| 37 |  | nnenom 14022 | . . . . . . . . . . . . 13
⊢ ℕ
≈ ω | 
| 38 | 37 | ensymi 9045 | . . . . . . . . . . . 12
⊢ ω
≈ ℕ | 
| 39 |  | domentr 9054 | . . . . . . . . . . . 12
⊢ ((𝑥 ≼ ω ∧ ω
≈ ℕ) → 𝑥
≼ ℕ) | 
| 40 | 36, 38, 39 | sylancl 586 | . . . . . . . . . . 11
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ℕ) | 
| 41 |  | fodomr 9169 | . . . . . . . . . . 11
⊢ ((∅
≺ 𝑥 ∧ 𝑥 ≼ ℕ) →
∃𝑓 𝑓:ℕ–onto→𝑥) | 
| 42 | 35, 40, 41 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝑥) | 
| 43 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑖 → (𝑓‘𝑛) = (𝑓‘𝑖)) | 
| 44 | 43 | iundisj 25584 | . . . . . . . . . . . . 13
⊢ ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ 𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) | 
| 45 |  | fofn 6821 | . . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–onto→𝑥 → 𝑓 Fn ℕ) | 
| 46 |  | fniunfv 7268 | . . . . . . . . . . . . . . 15
⊢ (𝑓 Fn ℕ → ∪ 𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ ran 𝑓) | 
| 47 | 45, 46 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–onto→𝑥 → ∪
𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ ran 𝑓) | 
| 48 |  | forn 6822 | . . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ–onto→𝑥 → ran 𝑓 = 𝑥) | 
| 49 | 48 | unieqd 4919 | . . . . . . . . . . . . . 14
⊢ (𝑓:ℕ–onto→𝑥 → ∪ ran
𝑓 = ∪ 𝑥) | 
| 50 | 47, 49 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ (𝑓:ℕ–onto→𝑥 → ∪
𝑛 ∈ ℕ (𝑓‘𝑛) = ∪ 𝑥) | 
| 51 | 44, 50 | eqtr3id 2790 | . . . . . . . . . . . 12
⊢ (𝑓:ℕ–onto→𝑥 → ∪
𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) = ∪ 𝑥) | 
| 52 | 51 | adantl 481 | . . . . . . . . . . 11
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∪
𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) = ∪ 𝑥) | 
| 53 |  | fvex 6918 | . . . . . . . . . . . . . 14
⊢ (𝑓‘𝑛) ∈ V | 
| 54 |  | difexg 5328 | . . . . . . . . . . . . . 14
⊢ ((𝑓‘𝑛) ∈ V → ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) ∈ V) | 
| 55 | 53, 54 | ax-mp 5 | . . . . . . . . . . . . 13
⊢ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) ∈ V | 
| 56 | 55 | dfiun3 5979 | . . . . . . . . . . . 12
⊢ ∪ 𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) = ∪ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 57 |  | nfv 1913 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) | 
| 58 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛𝑦 | 
| 59 |  | nfmpt1 5249 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 60 | 59 | nfrn 5962 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑛ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 61 | 58, 60 | nfel 2919 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 62 | 57, 61 | nfan 1898 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑛(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) | 
| 63 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 64 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑖((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) | 
| 65 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑖𝑦 | 
| 66 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑖ℕ | 
| 67 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑖(𝑓‘𝑛) | 
| 68 |  | nfiu1 5026 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑖∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖) | 
| 69 | 67, 68 | nfdif 4128 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑖((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) | 
| 70 | 66, 69 | nfmpt 5248 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑖(𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 71 | 70 | nfrn 5962 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑖ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 72 | 65, 71 | nfel 2919 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑖 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 73 | 64, 72 | nfan 1898 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑖(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) | 
| 74 |  | nfv 1913 | . . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑖 𝑛 ∈ ℕ | 
| 75 | 73, 74 | nfan 1898 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑖((((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) | 
| 76 | 65, 69 | nfeq 2918 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑖 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) | 
| 77 | 75, 76 | nfan 1898 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑖(((((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 78 | 6 | ad7antr 738 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑡 ∈ (𝑃 ∩ 𝐿)) | 
| 79 |  | simp-4r 783 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → 𝑥 ∈ 𝒫 𝑡) | 
| 80 | 79 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑥 ∈ 𝒫 𝑡) | 
| 81 | 80 | elpwid 4608 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑥 ⊆ 𝑡) | 
| 82 |  | fof 6819 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓:ℕ–onto→𝑥 → 𝑓:ℕ⟶𝑥) | 
| 83 | 82 | ad4antlr 733 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑓:ℕ⟶𝑥) | 
| 84 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑛 ∈ ℕ) | 
| 85 | 83, 84 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . 20
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (𝑓‘𝑛) ∈ 𝑥) | 
| 86 | 81, 85 | sseldd 3983 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (𝑓‘𝑛) ∈ 𝑡) | 
| 87 |  | fzofi 14016 | . . . . . . . . . . . . . . . . . . . 20
⊢
(1..^𝑛) ∈
Fin | 
| 88 | 87 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (1..^𝑛) ∈ Fin) | 
| 89 | 81 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑥 ⊆ 𝑡) | 
| 90 | 83 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝑥) | 
| 91 |  | fzossnn 13752 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢
(1..^𝑛) ⊆
ℕ | 
| 92 | 91 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (1..^𝑛) ⊆ ℕ) | 
| 93 | 92 | sselda 3982 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑖 ∈ ℕ) | 
| 94 | 90, 93 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓‘𝑖) ∈ 𝑥) | 
| 95 | 89, 94 | sseldd 3983 | . . . . . . . . . . . . . . . . . . 19
⊢
(((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓‘𝑖) ∈ 𝑡) | 
| 96 | 1, 3, 77, 78, 86, 88, 95 | sigapildsyslem 34163 | . . . . . . . . . . . . . . . . . 18
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) ∈ 𝑡) | 
| 97 | 63, 96 | eqeltrd 2840 | . . . . . . . . . . . . . . . . 17
⊢
((((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑦 ∈ 𝑡) | 
| 98 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) → 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) | 
| 99 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) = (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 100 | 99, 55 | elrnmpti 5972 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ↔ ∃𝑛 ∈ ℕ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 101 | 98, 100 | sylib 218 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) → ∃𝑛 ∈ ℕ 𝑦 = ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) | 
| 102 | 62, 97, 101 | r19.29af 3267 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑡 ∈
(𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) → 𝑦 ∈ 𝑡) | 
| 103 | 102 | ex 412 | . . . . . . . . . . . . . . 15
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → 𝑦 ∈ 𝑡)) | 
| 104 | 103 | ssrdv 3988 | . . . . . . . . . . . . . 14
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ⊆ 𝑡) | 
| 105 |  | nnex 12273 | . . . . . . . . . . . . . . . . 17
⊢ ℕ
∈ V | 
| 106 | 105 | mptex 7244 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ V | 
| 107 | 106 | rnex 7933 | . . . . . . . . . . . . . . 15
⊢ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ V | 
| 108 |  | elpwg 4602 | . . . . . . . . . . . . . . 15
⊢ (ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ V → (ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ⊆ 𝑡)) | 
| 109 | 107, 108 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ (ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ⊆ 𝑡) | 
| 110 | 104, 109 | sylibr 234 | . . . . . . . . . . . . 13
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡) | 
| 111 | 16 | simp3d 1144 | . . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) | 
| 112 | 111 | ad4antr 732 | . . . . . . . . . . . . 13
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) | 
| 113 |  | nnct 14023 | . . . . . . . . . . . . . . 15
⊢ ℕ
≼ ω | 
| 114 |  | mptct 10579 | . . . . . . . . . . . . . . 15
⊢ (ℕ
≼ ω → (𝑛
∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω) | 
| 115 | 113, 114 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω | 
| 116 |  | rnct 10566 | . . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω → ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω) | 
| 117 | 115, 116 | mp1i 13 | . . . . . . . . . . . . 13
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω) | 
| 118 | 43 | iundisj2 25585 | . . . . . . . . . . . . . 14
⊢
Disj 𝑛 ∈
ℕ ((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) | 
| 119 |  | disjrnmpt 32599 | . . . . . . . . . . . . . 14
⊢
(Disj 𝑛
∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) | 
| 120 | 118, 119 | mp1i 13 | . . . . . . . . . . . . 13
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) | 
| 121 |  | breq1 5145 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (𝑥 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω)) | 
| 122 |  | disjeq1 5116 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (Disj 𝑦 ∈ 𝑥 𝑦 ↔ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦)) | 
| 123 | 121, 122 | anbi12d 632 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) ↔ (ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦))) | 
| 124 |  | unieq 4917 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → ∪ 𝑥 = ∪
ran (𝑛 ∈ ℕ
↦ ((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))) | 
| 125 | 124 | eleq1d 2825 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (∪
𝑥 ∈ 𝑡 ↔ ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡)) | 
| 126 | 123, 125 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) → (((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡) ↔ ((ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡))) | 
| 127 | 126 | rspcv 3617 | . . . . . . . . . . . . . . 15
⊢ (ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 → (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡))) | 
| 128 | 127 | imp 406 | . . . . . . . . . . . . . 14
⊢ ((ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡)) | 
| 129 | 128 | imp 406 | . . . . . . . . . . . . 13
⊢ (((ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) ∧ (ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)))𝑦)) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡) | 
| 130 | 110, 112,
117, 120, 129 | syl22anc 838 | . . . . . . . . . . . 12
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∪ ran
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛) ∖ ∪ 𝑖 ∈ (1..^𝑛)(𝑓‘𝑖))) ∈ 𝑡) | 
| 131 | 56, 130 | eqeltrid 2844 | . . . . . . . . . . 11
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∪
𝑛 ∈ ℕ ((𝑓‘𝑛) ∖ ∪
𝑖 ∈ (1..^𝑛)(𝑓‘𝑖)) ∈ 𝑡) | 
| 132 | 52, 131 | eqeltrrd 2841 | . . . . . . . . . 10
⊢
(((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto→𝑥) → ∪ 𝑥 ∈ 𝑡) | 
| 133 | 42, 132 | exlimddv 1934 | . . . . . . . . 9
⊢ ((((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∪ 𝑥
∈ 𝑡) | 
| 134 | 31, 133 | pm2.61dane 3028 | . . . . . . . 8
⊢ (((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) → ∪ 𝑥
∈ 𝑡) | 
| 135 | 134 | ex 412 | . . . . . . 7
⊢ ((𝑡 ∈ (𝑃 ∩ 𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) → (𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡)) | 
| 136 | 135 | ralrimiva 3145 | . . . . . 6
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡)) | 
| 137 | 25, 17, 136 | 3jca 1128 | . . . . 5
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑂 ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡))) | 
| 138 | 11, 137 | jca 511 | . . . 4
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡)))) | 
| 139 |  | vex 3483 | . . . . 5
⊢ 𝑡 ∈ V | 
| 140 |  | issiga 34114 | . . . . 5
⊢ (𝑡 ∈ V → (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡))))) | 
| 141 | 139, 140 | ax-mp 5 | . . . 4
⊢ (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂 ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑡)))) | 
| 142 | 138, 141 | sylibr 234 | . . 3
⊢ (𝑡 ∈ (𝑃 ∩ 𝐿) → 𝑡 ∈ (sigAlgebra‘𝑂)) | 
| 143 | 142 | ssriv 3986 | . 2
⊢ (𝑃 ∩ 𝐿) ⊆ (sigAlgebra‘𝑂) | 
| 144 | 5, 143 | eqssi 3999 | 1
⊢
(sigAlgebra‘𝑂)
= (𝑃 ∩ 𝐿) |