Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsys Structured version   Visualization version   GIF version

Theorem sigapildsys 34165
Description: Sigma-algebra are exactly classes which are both lambda and pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigapildsys (sigAlgebra‘𝑂) = (𝑃𝐿)
Distinct variable groups:   𝑥,𝑠,𝑦   𝑥,𝐿,𝑦   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑃(𝑠)   𝐿(𝑠)   𝑂(𝑦)

Proof of Theorem sigapildsys
Dummy variables 𝑓 𝑖 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . 4 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
21sigapisys 34158 . . 3 (sigAlgebra‘𝑂) ⊆ 𝑃
3 dynkin.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
43sigaldsys 34162 . . 3 (sigAlgebra‘𝑂) ⊆ 𝐿
52, 4ssini 4188 . 2 (sigAlgebra‘𝑂) ⊆ (𝑃𝐿)
6 id 22 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (𝑃𝐿))
76elin1d 4152 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → 𝑡𝑃)
81ispisys 34155 . . . . . . . 8 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
97, 8sylib 218 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
109simpld 494 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ 𝒫 𝒫 𝑂)
1110elpwid 4557 . . . . 5 (𝑡 ∈ (𝑃𝐿) → 𝑡 ⊆ 𝒫 𝑂)
12 dif0 4326 . . . . . . 7 (𝑂 ∖ ∅) = 𝑂
136elin2d 4153 . . . . . . . . . . 11 (𝑡 ∈ (𝑃𝐿) → 𝑡𝐿)
143isldsys 34159 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1513, 14sylib 218 . . . . . . . . . 10 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1615simprd 495 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1716simp2d 1143 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
1816simp1d 1142 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → ∅ ∈ 𝑡)
19 difeq2 4068 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ∖ ∅))
20 eqidd 2731 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑡 = 𝑡)
2119, 20eleq12d 2823 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂 ∖ ∅) ∈ 𝑡))
2221rspcv 3571 . . . . . . . . 9 (∅ ∈ 𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2318, 22syl 17 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2417, 23mpd 15 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑂 ∖ ∅) ∈ 𝑡)
2512, 24eqeltrrid 2834 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑂𝑡)
26 unieq 4868 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
27 uni0 4885 . . . . . . . . . . . 12 ∅ = ∅
2826, 27eqtrdi 2781 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
2928adantl 481 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥 = ∅)
3018ad3antrrr 730 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∅ ∈ 𝑡)
3129, 30eqeltrd 2829 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥𝑡)
32 vex 3438 . . . . . . . . . . . . . 14 𝑥 ∈ V
33320sdom 9016 . . . . . . . . . . . . 13 (∅ ≺ 𝑥𝑥 ≠ ∅)
3433biimpri 228 . . . . . . . . . . . 12 (𝑥 ≠ ∅ → ∅ ≺ 𝑥)
3534adantl 481 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∅ ≺ 𝑥)
36 simplr 768 . . . . . . . . . . . 12 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ω)
37 nnenom 13879 . . . . . . . . . . . . 13 ℕ ≈ ω
3837ensymi 8921 . . . . . . . . . . . 12 ω ≈ ℕ
39 domentr 8930 . . . . . . . . . . . 12 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
4036, 38, 39sylancl 586 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ℕ)
41 fodomr 9036 . . . . . . . . . . 11 ((∅ ≺ 𝑥𝑥 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝑥)
4235, 40, 41syl2anc 584 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝑥)
43 fveq2 6817 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
4443iundisj 25469 . . . . . . . . . . . . 13 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
45 fofn 6733 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥𝑓 Fn ℕ)
46 fniunfv 7176 . . . . . . . . . . . . . . 15 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
48 forn 6734 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥 → ran 𝑓 = 𝑥)
4948unieqd 4870 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 ran 𝑓 = 𝑥)
5047, 49eqtrd 2765 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑥)
5144, 50eqtr3id 2779 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
5251adantl 481 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
53 fvex 6830 . . . . . . . . . . . . . 14 (𝑓𝑛) ∈ V
54 difexg 5265 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ V → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V)
5553, 54ax-mp 5 . . . . . . . . . . . . 13 ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V
5655dfiun3 5906 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
57 nfv 1915 . . . . . . . . . . . . . . . . . 18 𝑛((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
58 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑛𝑦
59 nfmpt1 5188 . . . . . . . . . . . . . . . . . . . 20 𝑛(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6059nfrn 5889 . . . . . . . . . . . . . . . . . . 19 𝑛ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6158, 60nfel 2907 . . . . . . . . . . . . . . . . . 18 𝑛 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6257, 61nfan 1900 . . . . . . . . . . . . . . . . 17 𝑛(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
63 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
64 nfv 1915 . . . . . . . . . . . . . . . . . . . . . 22 𝑖((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
65 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖𝑦
66 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖
67 nfcv 2892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖(𝑓𝑛)
68 nfiu1 4975 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖 𝑖 ∈ (1..^𝑛)(𝑓𝑖)
6967, 68nfdif 4077 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7066, 69nfmpt 5187 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7170nfrn 5889 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7265, 71nfel 2907 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7364, 72nfan 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑖(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
74 nfv 1915 . . . . . . . . . . . . . . . . . . . . 21 𝑖 𝑛 ∈ ℕ
7573, 74nfan 1900 . . . . . . . . . . . . . . . . . . . 20 𝑖((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ)
7665, 69nfeq 2906 . . . . . . . . . . . . . . . . . . . 20 𝑖 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7775, 76nfan 1900 . . . . . . . . . . . . . . . . . . 19 𝑖(((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
786ad7antr 738 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑡 ∈ (𝑃𝐿))
79 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥 ∈ 𝒫 𝑡)
8079ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 ∈ 𝒫 𝑡)
8180elpwid 4557 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥𝑡)
82 fof 6731 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℕ–onto𝑥𝑓:ℕ⟶𝑥)
8382ad4antlr 733 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑓:ℕ⟶𝑥)
84 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑛 ∈ ℕ)
8583, 84ffvelcdmd 7013 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑥)
8681, 85sseldd 3933 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑡)
87 fzofi 13873 . . . . . . . . . . . . . . . . . . . 20 (1..^𝑛) ∈ Fin
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ∈ Fin)
8981adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑥𝑡)
9083adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝑥)
91 fzossnn 13603 . . . . . . . . . . . . . . . . . . . . . . 23 (1..^𝑛) ⊆ ℕ
9291a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ⊆ ℕ)
9392sselda 3932 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑖 ∈ ℕ)
9490, 93ffvelcdmd 7013 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑥)
9589, 94sseldd 3933 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑡)
961, 3, 77, 78, 86, 88, 95sigapildsyslem 34164 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
9763, 96eqeltrd 2829 . . . . . . . . . . . . . . . . 17 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡)
98 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
99 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10099, 55elrnmpti 5899 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ↔ ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10198, 100sylib 218 . . . . . . . . . . . . . . . . 17 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10262, 97, 101r19.29af 3239 . . . . . . . . . . . . . . . 16 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦𝑡)
103102ex 412 . . . . . . . . . . . . . . 15 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡))
104103ssrdv 3938 . . . . . . . . . . . . . 14 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
105 nnex 12123 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
106105mptex 7152 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
107106rnex 7835 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
108 elpwg 4551 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V → (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡))
109107, 108ax-mp 5 . . . . . . . . . . . . . 14 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
110104, 109sylibr 234 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡)
11116simp3d 1144 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
112111ad4antr 732 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
113 nnct 13880 . . . . . . . . . . . . . . 15 ℕ ≼ ω
114 mptct 10421 . . . . . . . . . . . . . . 15 (ℕ ≼ ω → (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
115113, 114ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω
116 rnct 10408 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
117115, 116mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
11843iundisj2 25470 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
119 disjrnmpt 32555 . . . . . . . . . . . . . 14 (Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
120118, 119mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
121 breq1 5092 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑥 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω))
122 disjeq1 5063 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦))
123121, 122anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)))
124 unieq 4868 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
125124eleq1d 2814 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ( 𝑥𝑡 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
126123, 125imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
127126rspcv 3571 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 → (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
128127imp 406 . . . . . . . . . . . . . 14 ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
129128imp 406 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) ∧ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
130110, 112, 117, 120, 129syl22anc 838 . . . . . . . . . . . 12 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
13156, 130eqeltrid 2833 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
13252, 131eqeltrrd 2830 . . . . . . . . . 10 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥𝑡)
13342, 132exlimddv 1936 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥𝑡)
13431, 133pm2.61dane 3013 . . . . . . . 8 (((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) → 𝑥𝑡)
135134ex 412 . . . . . . 7 ((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) → (𝑥 ≼ ω → 𝑥𝑡))
136135ralrimiva 3122 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))
13725, 17, 1363jca 1128 . . . . 5 (𝑡 ∈ (𝑃𝐿) → (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))
13811, 137jca 511 . . . 4 (𝑡 ∈ (𝑃𝐿) → (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
139 vex 3438 . . . . 5 𝑡 ∈ V
140 issiga 34115 . . . . 5 (𝑡 ∈ V → (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))))
141139, 140ax-mp 5 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
142138, 141sylibr 234 . . 3 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (sigAlgebra‘𝑂))
143142ssriv 3936 . 2 (𝑃𝐿) ⊆ (sigAlgebra‘𝑂)
1445, 143eqssi 3949 1 (sigAlgebra‘𝑂) = (𝑃𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  cdif 3897  cin 3899  wss 3900  c0 4281  𝒫 cpw 4548   cuni 4857   ciun 4939  Disj wdisj 5056   class class class wbr 5089  cmpt 5170  ran crn 5615   Fn wfn 6472  wf 6473  ontowfo 6475  cfv 6477  (class class class)co 7341  ωcom 7791  cen 8861  cdom 8862  csdm 8863  Fincfn 8864  ficfi 9289  1c1 10999  cn 12117  ..^cfzo 13546  sigAlgebracsiga 34111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-siga 34112
This theorem is referenced by:  dynkin  34170
  Copyright terms: Public domain W3C validator