Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaldsys Structured version   Visualization version   GIF version

Theorem sigaldsys 34193
Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigaldsys (sigAlgebra‘𝑂) ⊆ 𝐿
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem sigaldsys
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 sigasspw 34150 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂)
2 velpw 4554 . . . . 5 (𝑡 ∈ 𝒫 𝒫 𝑂𝑡 ⊆ 𝒫 𝑂)
31, 2sylibr 234 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂)
4 elrnsiga 34160 . . . . . 6 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ran sigAlgebra)
5 0elsiga 34148 . . . . . 6 (𝑡 ran sigAlgebra → ∅ ∈ 𝑡)
64, 5syl 17 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∅ ∈ 𝑡)
74adantr 480 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑡 ran sigAlgebra)
8 baselsiga 34149 . . . . . . . 8 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑂𝑡)
98adantr 480 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑂𝑡)
10 simpr 484 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑥𝑡)
11 difelsiga 34167 . . . . . . 7 ((𝑡 ran sigAlgebra ∧ 𝑂𝑡𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
127, 9, 10, 11syl3anc 1373 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
1312ralrimiva 3125 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
144ad2antrr 726 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑡 ran sigAlgebra)
15 simplr 768 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑡)
16 simprl 770 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ≼ ω)
17 sigaclcu 34151 . . . . . . . 8 ((𝑡 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡𝑥 ≼ ω) → 𝑥𝑡)
1814, 15, 16, 17syl3anc 1373 . . . . . . 7 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑡)
1918ex 412 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
2019ralrimiva 3125 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
216, 13, 203jca 1128 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
223, 21jca 511 . . 3 (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
23 isldsys.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
2423isldsys 34190 . . 3 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
2522, 24sylibr 234 . 2 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡𝐿)
2625ssriv 3934 1 (sigAlgebra‘𝑂) ⊆ 𝐿
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {crab 3396  cdif 3895  wss 3898  c0 4282  𝒫 cpw 4549   cuni 4858  Disj wdisj 5060   class class class wbr 5093  ran crn 5620  cfv 6486  ωcom 7802  cdom 8873  sigAlgebracsiga 34142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-ac2 10361
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-oi 9403  df-dju 9801  df-card 9839  df-acn 9842  df-ac 10014  df-siga 34143
This theorem is referenced by:  ldsysgenld  34194  sigapildsys  34196
  Copyright terms: Public domain W3C validator