| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaldsys | Structured version Visualization version GIF version | ||
| Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.) |
| Ref | Expression |
|---|---|
| isldsys.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
| Ref | Expression |
|---|---|
| sigaldsys | ⊢ (sigAlgebra‘𝑂) ⊆ 𝐿 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigasspw 34106 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂) | |
| 2 | velpw 4568 | . . . . 5 ⊢ (𝑡 ∈ 𝒫 𝒫 𝑂 ↔ 𝑡 ⊆ 𝒫 𝑂) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂) |
| 4 | elrnsiga 34116 | . . . . . 6 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ ∪ ran sigAlgebra) | |
| 5 | 0elsiga 34104 | . . . . . 6 ⊢ (𝑡 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑡) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∅ ∈ 𝑡) |
| 7 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑡 ∈ ∪ ran sigAlgebra) |
| 8 | baselsiga 34105 | . . . . . . . 8 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ 𝑡) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑂 ∈ 𝑡) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑥 ∈ 𝑡) | |
| 11 | difelsiga 34123 | . . . . . . 7 ⊢ ((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑂 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) | |
| 12 | 7, 9, 10, 11 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) |
| 13 | 12 | ralrimiva 3125 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
| 14 | 4 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑡 ∈ ∪ ran sigAlgebra) |
| 15 | simplr 768 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑡) | |
| 16 | simprl 770 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ≼ ω) | |
| 17 | sigaclcu 34107 | . . . . . . . 8 ⊢ ((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡 ∧ 𝑥 ≼ ω) → ∪ 𝑥 ∈ 𝑡) | |
| 18 | 14, 15, 16, 17 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ 𝑡) |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
| 20 | 19 | ralrimiva 3125 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
| 21 | 6, 13, 20 | 3jca 1128 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡))) |
| 22 | 3, 21 | jca 511 | . . 3 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
| 23 | isldsys.l | . . . 4 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
| 24 | 23 | isldsys 34146 | . . 3 ⊢ (𝑡 ∈ 𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
| 25 | 22, 24 | sylibr 234 | . 2 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝐿) |
| 26 | 25 | ssriv 3950 | 1 ⊢ (sigAlgebra‘𝑂) ⊆ 𝐿 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 ∪ cuni 4871 Disj wdisj 5074 class class class wbr 5107 ran crn 5639 ‘cfv 6511 ωcom 7842 ≼ cdom 8916 sigAlgebracsiga 34098 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-dju 9854 df-card 9892 df-acn 9895 df-ac 10069 df-siga 34099 |
| This theorem is referenced by: ldsysgenld 34150 sigapildsys 34152 |
| Copyright terms: Public domain | W3C validator |