Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaldsys | Structured version Visualization version GIF version |
Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.) |
Ref | Expression |
---|---|
isldsys.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
Ref | Expression |
---|---|
sigaldsys | ⊢ (sigAlgebra‘𝑂) ⊆ 𝐿 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigasspw 32380 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂) | |
2 | velpw 4556 | . . . . 5 ⊢ (𝑡 ∈ 𝒫 𝒫 𝑂 ↔ 𝑡 ⊆ 𝒫 𝑂) | |
3 | 1, 2 | sylibr 233 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂) |
4 | elrnsiga 32390 | . . . . . 6 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ ∪ ran sigAlgebra) | |
5 | 0elsiga 32378 | . . . . . 6 ⊢ (𝑡 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑡) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∅ ∈ 𝑡) |
7 | 4 | adantr 482 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑡 ∈ ∪ ran sigAlgebra) |
8 | baselsiga 32379 | . . . . . . . 8 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ 𝑡) | |
9 | 8 | adantr 482 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑂 ∈ 𝑡) |
10 | simpr 486 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑥 ∈ 𝑡) | |
11 | difelsiga 32397 | . . . . . . 7 ⊢ ((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑂 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) | |
12 | 7, 9, 10, 11 | syl3anc 1371 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) |
13 | 12 | ralrimiva 3140 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
14 | 4 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑡 ∈ ∪ ran sigAlgebra) |
15 | simplr 767 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑡) | |
16 | simprl 769 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ≼ ω) | |
17 | sigaclcu 32381 | . . . . . . . 8 ⊢ ((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡 ∧ 𝑥 ≼ ω) → ∪ 𝑥 ∈ 𝑡) | |
18 | 14, 15, 16, 17 | syl3anc 1371 | . . . . . . 7 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ 𝑡) |
19 | 18 | ex 414 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
20 | 19 | ralrimiva 3140 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
21 | 6, 13, 20 | 3jca 1128 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡))) |
22 | 3, 21 | jca 513 | . . 3 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
23 | isldsys.l | . . . 4 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
24 | 23 | isldsys 32420 | . . 3 ⊢ (𝑡 ∈ 𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
25 | 22, 24 | sylibr 233 | . 2 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝐿) |
26 | 25 | ssriv 3939 | 1 ⊢ (sigAlgebra‘𝑂) ⊆ 𝐿 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 {crab 3404 ∖ cdif 3898 ⊆ wss 3901 ∅c0 4273 𝒫 cpw 4551 ∪ cuni 4856 Disj wdisj 5061 class class class wbr 5096 ran crn 5625 ‘cfv 6483 ωcom 7784 ≼ cdom 8806 sigAlgebracsiga 32372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-ac2 10324 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-iin 4948 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-2o 8372 df-er 8573 df-map 8692 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-oi 9371 df-dju 9762 df-card 9800 df-acn 9803 df-ac 9977 df-siga 32373 |
This theorem is referenced by: ldsysgenld 32424 sigapildsys 32426 |
Copyright terms: Public domain | W3C validator |