Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaldsys Structured version   Visualization version   GIF version

Theorem sigaldsys 34190
Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigaldsys (sigAlgebra‘𝑂) ⊆ 𝐿
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem sigaldsys
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 sigasspw 34147 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂)
2 velpw 4580 . . . . 5 (𝑡 ∈ 𝒫 𝒫 𝑂𝑡 ⊆ 𝒫 𝑂)
31, 2sylibr 234 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂)
4 elrnsiga 34157 . . . . . 6 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ran sigAlgebra)
5 0elsiga 34145 . . . . . 6 (𝑡 ran sigAlgebra → ∅ ∈ 𝑡)
64, 5syl 17 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∅ ∈ 𝑡)
74adantr 480 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑡 ran sigAlgebra)
8 baselsiga 34146 . . . . . . . 8 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑂𝑡)
98adantr 480 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑂𝑡)
10 simpr 484 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑥𝑡)
11 difelsiga 34164 . . . . . . 7 ((𝑡 ran sigAlgebra ∧ 𝑂𝑡𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
127, 9, 10, 11syl3anc 1373 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
1312ralrimiva 3132 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
144ad2antrr 726 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑡 ran sigAlgebra)
15 simplr 768 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑡)
16 simprl 770 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ≼ ω)
17 sigaclcu 34148 . . . . . . . 8 ((𝑡 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡𝑥 ≼ ω) → 𝑥𝑡)
1814, 15, 16, 17syl3anc 1373 . . . . . . 7 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑡)
1918ex 412 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
2019ralrimiva 3132 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
216, 13, 203jca 1128 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
223, 21jca 511 . . 3 (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
23 isldsys.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
2423isldsys 34187 . . 3 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
2522, 24sylibr 234 . 2 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡𝐿)
2625ssriv 3962 1 (sigAlgebra‘𝑂) ⊆ 𝐿
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575   cuni 4883  Disj wdisj 5086   class class class wbr 5119  ran crn 5655  cfv 6531  ωcom 7861  cdom 8957  sigAlgebracsiga 34139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-oi 9524  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-siga 34140
This theorem is referenced by:  ldsysgenld  34191  sigapildsys  34193
  Copyright terms: Public domain W3C validator