Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaldsys Structured version   Visualization version   GIF version

Theorem sigaldsys 34167
Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigaldsys (sigAlgebra‘𝑂) ⊆ 𝐿
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem sigaldsys
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 sigasspw 34124 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂)
2 velpw 4555 . . . . 5 (𝑡 ∈ 𝒫 𝒫 𝑂𝑡 ⊆ 𝒫 𝑂)
31, 2sylibr 234 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂)
4 elrnsiga 34134 . . . . . 6 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ran sigAlgebra)
5 0elsiga 34122 . . . . . 6 (𝑡 ran sigAlgebra → ∅ ∈ 𝑡)
64, 5syl 17 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∅ ∈ 𝑡)
74adantr 480 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑡 ran sigAlgebra)
8 baselsiga 34123 . . . . . . . 8 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑂𝑡)
98adantr 480 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑂𝑡)
10 simpr 484 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑥𝑡)
11 difelsiga 34141 . . . . . . 7 ((𝑡 ran sigAlgebra ∧ 𝑂𝑡𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
127, 9, 10, 11syl3anc 1373 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
1312ralrimiva 3124 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
144ad2antrr 726 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑡 ran sigAlgebra)
15 simplr 768 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑡)
16 simprl 770 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ≼ ω)
17 sigaclcu 34125 . . . . . . . 8 ((𝑡 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡𝑥 ≼ ω) → 𝑥𝑡)
1814, 15, 16, 17syl3anc 1373 . . . . . . 7 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑡)
1918ex 412 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
2019ralrimiva 3124 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
216, 13, 203jca 1128 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
223, 21jca 511 . . 3 (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
23 isldsys.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
2423isldsys 34164 . . 3 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
2522, 24sylibr 234 . 2 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡𝐿)
2625ssriv 3938 1 (sigAlgebra‘𝑂) ⊆ 𝐿
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cdif 3899  wss 3902  c0 4283  𝒫 cpw 4550   cuni 4859  Disj wdisj 5058   class class class wbr 5091  ran crn 5617  cfv 6481  ωcom 7796  cdom 8867  sigAlgebracsiga 34116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-ac2 10351
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-dju 9791  df-card 9829  df-acn 9832  df-ac 10004  df-siga 34117
This theorem is referenced by:  ldsysgenld  34168  sigapildsys  34170
  Copyright terms: Public domain W3C validator