Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaldsys Structured version   Visualization version   GIF version

Theorem sigaldsys 32423
Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigaldsys (sigAlgebra‘𝑂) ⊆ 𝐿
Distinct variable groups:   𝑦,𝑠   𝑂,𝑠,𝑥
Allowed substitution hints:   𝐿(𝑥,𝑦,𝑠)   𝑂(𝑦)

Proof of Theorem sigaldsys
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 sigasspw 32380 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂)
2 velpw 4556 . . . . 5 (𝑡 ∈ 𝒫 𝒫 𝑂𝑡 ⊆ 𝒫 𝑂)
31, 2sylibr 233 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂)
4 elrnsiga 32390 . . . . . 6 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ran sigAlgebra)
5 0elsiga 32378 . . . . . 6 (𝑡 ran sigAlgebra → ∅ ∈ 𝑡)
64, 5syl 17 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∅ ∈ 𝑡)
74adantr 482 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑡 ran sigAlgebra)
8 baselsiga 32379 . . . . . . . 8 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑂𝑡)
98adantr 482 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑂𝑡)
10 simpr 486 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → 𝑥𝑡)
11 difelsiga 32397 . . . . . . 7 ((𝑡 ran sigAlgebra ∧ 𝑂𝑡𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
127, 9, 10, 11syl3anc 1371 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
1312ralrimiva 3140 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
144ad2antrr 724 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑡 ran sigAlgebra)
15 simplr 767 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑡)
16 simprl 769 . . . . . . . 8 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 ≼ ω)
17 sigaclcu 32381 . . . . . . . 8 ((𝑡 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡𝑥 ≼ ω) → 𝑥𝑡)
1814, 15, 16, 17syl3anc 1371 . . . . . . 7 (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑡)
1918ex 414 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
2019ralrimiva 3140 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
216, 13, 203jca 1128 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
223, 21jca 513 . . 3 (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
23 isldsys.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
2423isldsys 32420 . . 3 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
2522, 24sylibr 233 . 2 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡𝐿)
2625ssriv 3939 1 (sigAlgebra‘𝑂) ⊆ 𝐿
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wral 3062  {crab 3404  cdif 3898  wss 3901  c0 4273  𝒫 cpw 4551   cuni 4856  Disj wdisj 5061   class class class wbr 5096  ran crn 5625  cfv 6483  ωcom 7784  cdom 8806  sigAlgebracsiga 32372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-inf2 9502  ax-ac2 10324
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-se 5580  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-isom 6492  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7785  df-1st 7903  df-2nd 7904  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-er 8573  df-map 8692  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-oi 9371  df-dju 9762  df-card 9800  df-acn 9803  df-ac 9977  df-siga 32373
This theorem is referenced by:  ldsysgenld  32424  sigapildsys  32426
  Copyright terms: Public domain W3C validator