| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigaldsys | Structured version Visualization version GIF version | ||
| Description: All sigma-algebras are lambda-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.) |
| Ref | Expression |
|---|---|
| isldsys.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
| Ref | Expression |
|---|---|
| sigaldsys | ⊢ (sigAlgebra‘𝑂) ⊆ 𝐿 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigasspw 34124 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂) | |
| 2 | velpw 4555 | . . . . 5 ⊢ (𝑡 ∈ 𝒫 𝒫 𝑂 ↔ 𝑡 ⊆ 𝒫 𝑂) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂) |
| 4 | elrnsiga 34134 | . . . . . 6 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ ∪ ran sigAlgebra) | |
| 5 | 0elsiga 34122 | . . . . . 6 ⊢ (𝑡 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑡) | |
| 6 | 4, 5 | syl 17 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∅ ∈ 𝑡) |
| 7 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑡 ∈ ∪ ran sigAlgebra) |
| 8 | baselsiga 34123 | . . . . . . . 8 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑂 ∈ 𝑡) | |
| 9 | 8 | adantr 480 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑂 ∈ 𝑡) |
| 10 | simpr 484 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → 𝑥 ∈ 𝑡) | |
| 11 | difelsiga 34141 | . . . . . . 7 ⊢ ((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑂 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) | |
| 12 | 7, 9, 10, 11 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) |
| 13 | 12 | ralrimiva 3124 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
| 14 | 4 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑡 ∈ ∪ ran sigAlgebra) |
| 15 | simplr 768 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ∈ 𝒫 𝑡) | |
| 16 | simprl 770 | . . . . . . . 8 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → 𝑥 ≼ ω) | |
| 17 | sigaclcu 34125 | . . . . . . . 8 ⊢ ((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡 ∧ 𝑥 ≼ ω) → ∪ 𝑥 ∈ 𝑡) | |
| 18 | 14, 15, 16, 17 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ 𝑡) |
| 19 | 18 | ex 412 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
| 20 | 19 | ralrimiva 3124 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
| 21 | 6, 13, 20 | 3jca 1128 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡))) |
| 22 | 3, 21 | jca 511 | . . 3 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
| 23 | isldsys.l | . . . 4 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
| 24 | 23 | isldsys 34164 | . . 3 ⊢ (𝑡 ∈ 𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
| 25 | 22, 24 | sylibr 234 | . 2 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝐿) |
| 26 | 25 | ssriv 3938 | 1 ⊢ (sigAlgebra‘𝑂) ⊆ 𝐿 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∖ cdif 3899 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 ∪ cuni 4859 Disj wdisj 5058 class class class wbr 5091 ran crn 5617 ‘cfv 6481 ωcom 7796 ≼ cdom 8867 sigAlgebracsiga 34116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-ac2 10351 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-dju 9791 df-card 9829 df-acn 9832 df-ac 10004 df-siga 34117 |
| This theorem is referenced by: ldsysgenld 34168 sigapildsys 34170 |
| Copyright terms: Public domain | W3C validator |