Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsyslem Structured version   Visualization version   GIF version

Theorem sigapildsyslem 34125
Description: Lemma for sigapildsys 34126. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
sigapildsyslem.n 𝑛𝜑
sigapildsyslem.1 (𝜑𝑡 ∈ (𝑃𝐿))
sigapildsyslem.2 (𝜑𝐴𝑡)
sigapildsyslem.3 (𝜑𝑁 ∈ Fin)
sigapildsyslem.4 ((𝜑𝑛𝑁) → 𝐵𝑡)
Assertion
Ref Expression
sigapildsyslem (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦   𝑛,𝐿,𝑡,𝑥,𝑦   𝑂,𝑠,𝑡,𝑥   𝑃,𝑛,𝑡,𝑥,𝑦   𝐴,𝑛   𝑥,𝐵   𝑛,𝑁,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝐴(𝑥,𝑦,𝑡,𝑠)   𝐵(𝑦,𝑡,𝑛,𝑠)   𝑃(𝑠)   𝐿(𝑠)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑦,𝑛)

Proof of Theorem sigapildsyslem
StepHypRef Expression
1 iuneq1 5031 . . . . . . 7 (𝑁 = ∅ → 𝑛𝑁 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 5086 . . . . . . 7 𝑛 ∈ ∅ 𝐵 = ∅
31, 2eqtrdi 2796 . . . . . 6 (𝑁 = ∅ → 𝑛𝑁 𝐵 = ∅)
43difeq2d 4149 . . . . 5 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = (𝐴 ∖ ∅))
5 dif0 4400 . . . . 5 (𝐴 ∖ ∅) = 𝐴
64, 5eqtrdi 2796 . . . 4 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = 𝐴)
76adantl 481 . . 3 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) = 𝐴)
8 sigapildsyslem.2 . . . 4 (𝜑𝐴𝑡)
98adantr 480 . . 3 ((𝜑𝑁 = ∅) → 𝐴𝑡)
107, 9eqeltrd 2844 . 2 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
11 iindif2 5100 . . . 4 (𝑁 ≠ ∅ → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
1211adantl 481 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
13 sigapildsyslem.1 . . . . . . . 8 (𝜑𝑡 ∈ (𝑃𝐿))
1413adantr 480 . . . . . . 7 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ (𝑃𝐿))
1514elin1d 4227 . . . . . 6 ((𝜑𝑁 ≠ ∅) → 𝑡𝑃)
16 dynkin.p . . . . . . 7 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
1716ispisys 34116 . . . . . 6 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1815, 17sylib 218 . . . . 5 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1918simprd 495 . . . 4 ((𝜑𝑁 ≠ ∅) → (fi‘𝑡) ⊆ 𝑡)
20 sigapildsyslem.n . . . . . . 7 𝑛𝜑
21 nfv 1913 . . . . . . 7 𝑛 𝑁 ≠ ∅
2220, 21nfan 1898 . . . . . 6 𝑛(𝜑𝑁 ≠ ∅)
2318simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ 𝒫 𝒫 𝑂)
2423elpwid 4631 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝑡 ⊆ 𝒫 𝑂)
258adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝐴𝑡)
2624, 25sseldd 4009 . . . . . . . . . . 11 ((𝜑𝑁 ≠ ∅) → 𝐴 ∈ 𝒫 𝑂)
2726elpwid 4631 . . . . . . . . . 10 ((𝜑𝑁 ≠ ∅) → 𝐴𝑂)
2827adantr 480 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑂)
29 difin2 4320 . . . . . . . . 9 (𝐴𝑂 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3028, 29syl 17 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3119adantr 480 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (fi‘𝑡) ⊆ 𝑡)
3214adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝑡 ∈ (𝑃𝐿))
3314elin2d 4228 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ≠ ∅) → 𝑡𝐿)
34 dynkin.l . . . . . . . . . . . . . . . 16 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3534isldsys 34120 . . . . . . . . . . . . . . 15 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3633, 35sylib 218 . . . . . . . . . . . . . 14 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3736simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
3837simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
3938adantr 480 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
40 sigapildsyslem.4 . . . . . . . . . . . . 13 ((𝜑𝑛𝑁) → 𝐵𝑡)
4140adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐵𝑡)
42 nfv 1913 . . . . . . . . . . . . 13 𝑥(𝑂𝐵) ∈ 𝑡
43 difeq2 4143 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑂𝑥) = (𝑂𝐵))
4443eleq1d 2829 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐵) ∈ 𝑡))
4542, 44rspc 3623 . . . . . . . . . . . 12 (𝐵𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4641, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4739, 46mpd 15 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝑂𝐵) ∈ 𝑡)
4825adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑡)
49 inelfi 9487 . . . . . . . . . 10 ((𝑡 ∈ (𝑃𝐿) ∧ (𝑂𝐵) ∈ 𝑡𝐴𝑡) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5032, 47, 48, 49syl3anc 1371 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5131, 50sseldd 4009 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ 𝑡)
5230, 51eqeltrd 2844 . . . . . . 7 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) ∈ 𝑡)
5352ex 412 . . . . . 6 ((𝜑𝑁 ≠ ∅) → (𝑛𝑁 → (𝐴𝐵) ∈ 𝑡))
5422, 53ralrimi 3263 . . . . 5 ((𝜑𝑁 ≠ ∅) → ∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
55 simpr 484 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ≠ ∅)
56 sigapildsyslem.3 . . . . . 6 (𝜑𝑁 ∈ Fin)
5756adantr 480 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ∈ Fin)
58 vex 3492 . . . . . 6 𝑡 ∈ V
59 iinfi 9486 . . . . . 6 ((𝑡 ∈ V ∧ (∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6058, 59mpan 689 . . . . 5 ((∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6154, 55, 57, 60syl3anc 1371 . . . 4 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6219, 61sseldd 4009 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
6312, 62eqeltrrd 2845 . 2 ((𝜑𝑁 ≠ ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
6410, 63pm2.61dane 3035 1 (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   ciun 5015   ciin 5016  Disj wdisj 5133   class class class wbr 5166  cfv 6573  ωcom 7903  cdom 9001  Fincfn 9003  ficfi 9479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-2o 8523  df-en 9004  df-dom 9005  df-fin 9007  df-fi 9480
This theorem is referenced by:  sigapildsys  34126
  Copyright terms: Public domain W3C validator