Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsyslem Structured version   Visualization version   GIF version

Theorem sigapildsyslem 34127
Description: Lemma for sigapildsys 34128. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
sigapildsyslem.n 𝑛𝜑
sigapildsyslem.1 (𝜑𝑡 ∈ (𝑃𝐿))
sigapildsyslem.2 (𝜑𝐴𝑡)
sigapildsyslem.3 (𝜑𝑁 ∈ Fin)
sigapildsyslem.4 ((𝜑𝑛𝑁) → 𝐵𝑡)
Assertion
Ref Expression
sigapildsyslem (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦   𝑛,𝐿,𝑡,𝑥,𝑦   𝑂,𝑠,𝑡,𝑥   𝑃,𝑛,𝑡,𝑥,𝑦   𝐴,𝑛   𝑥,𝐵   𝑛,𝑁,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝐴(𝑥,𝑦,𝑡,𝑠)   𝐵(𝑦,𝑡,𝑛,𝑠)   𝑃(𝑠)   𝐿(𝑠)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑦,𝑛)

Proof of Theorem sigapildsyslem
StepHypRef Expression
1 iuneq1 4961 . . . . . . 7 (𝑁 = ∅ → 𝑛𝑁 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 5015 . . . . . . 7 𝑛 ∈ ∅ 𝐵 = ∅
31, 2eqtrdi 2780 . . . . . 6 (𝑁 = ∅ → 𝑛𝑁 𝐵 = ∅)
43difeq2d 4079 . . . . 5 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = (𝐴 ∖ ∅))
5 dif0 4331 . . . . 5 (𝐴 ∖ ∅) = 𝐴
64, 5eqtrdi 2780 . . . 4 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = 𝐴)
76adantl 481 . . 3 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) = 𝐴)
8 sigapildsyslem.2 . . . 4 (𝜑𝐴𝑡)
98adantr 480 . . 3 ((𝜑𝑁 = ∅) → 𝐴𝑡)
107, 9eqeltrd 2828 . 2 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
11 iindif2 5029 . . . 4 (𝑁 ≠ ∅ → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
1211adantl 481 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
13 sigapildsyslem.1 . . . . . . . 8 (𝜑𝑡 ∈ (𝑃𝐿))
1413adantr 480 . . . . . . 7 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ (𝑃𝐿))
1514elin1d 4157 . . . . . 6 ((𝜑𝑁 ≠ ∅) → 𝑡𝑃)
16 dynkin.p . . . . . . 7 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
1716ispisys 34118 . . . . . 6 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1815, 17sylib 218 . . . . 5 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1918simprd 495 . . . 4 ((𝜑𝑁 ≠ ∅) → (fi‘𝑡) ⊆ 𝑡)
20 sigapildsyslem.n . . . . . . 7 𝑛𝜑
21 nfv 1914 . . . . . . 7 𝑛 𝑁 ≠ ∅
2220, 21nfan 1899 . . . . . 6 𝑛(𝜑𝑁 ≠ ∅)
2318simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ 𝒫 𝒫 𝑂)
2423elpwid 4562 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝑡 ⊆ 𝒫 𝑂)
258adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝐴𝑡)
2624, 25sseldd 3938 . . . . . . . . . . 11 ((𝜑𝑁 ≠ ∅) → 𝐴 ∈ 𝒫 𝑂)
2726elpwid 4562 . . . . . . . . . 10 ((𝜑𝑁 ≠ ∅) → 𝐴𝑂)
2827adantr 480 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑂)
29 difin2 4254 . . . . . . . . 9 (𝐴𝑂 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3028, 29syl 17 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3119adantr 480 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (fi‘𝑡) ⊆ 𝑡)
3214adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝑡 ∈ (𝑃𝐿))
3314elin2d 4158 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ≠ ∅) → 𝑡𝐿)
34 dynkin.l . . . . . . . . . . . . . . . 16 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3534isldsys 34122 . . . . . . . . . . . . . . 15 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3633, 35sylib 218 . . . . . . . . . . . . . 14 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3736simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
3837simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
3938adantr 480 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
40 sigapildsyslem.4 . . . . . . . . . . . . 13 ((𝜑𝑛𝑁) → 𝐵𝑡)
4140adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐵𝑡)
42 nfv 1914 . . . . . . . . . . . . 13 𝑥(𝑂𝐵) ∈ 𝑡
43 difeq2 4073 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑂𝑥) = (𝑂𝐵))
4443eleq1d 2813 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐵) ∈ 𝑡))
4542, 44rspc 3567 . . . . . . . . . . . 12 (𝐵𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4641, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4739, 46mpd 15 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝑂𝐵) ∈ 𝑡)
4825adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑡)
49 inelfi 9327 . . . . . . . . . 10 ((𝑡 ∈ (𝑃𝐿) ∧ (𝑂𝐵) ∈ 𝑡𝐴𝑡) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5032, 47, 48, 49syl3anc 1373 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5131, 50sseldd 3938 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ 𝑡)
5230, 51eqeltrd 2828 . . . . . . 7 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) ∈ 𝑡)
5352ex 412 . . . . . 6 ((𝜑𝑁 ≠ ∅) → (𝑛𝑁 → (𝐴𝐵) ∈ 𝑡))
5422, 53ralrimi 3227 . . . . 5 ((𝜑𝑁 ≠ ∅) → ∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
55 simpr 484 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ≠ ∅)
56 sigapildsyslem.3 . . . . . 6 (𝜑𝑁 ∈ Fin)
5756adantr 480 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ∈ Fin)
58 vex 3442 . . . . . 6 𝑡 ∈ V
59 iinfi 9326 . . . . . 6 ((𝑡 ∈ V ∧ (∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6058, 59mpan 690 . . . . 5 ((∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6154, 55, 57, 60syl3anc 1373 . . . 4 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6219, 61sseldd 3938 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
6312, 62eqeltrrd 2829 . 2 ((𝜑𝑁 ≠ ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
6410, 63pm2.61dane 3012 1 (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wne 2925  wral 3044  {crab 3396  Vcvv 3438  cdif 3902  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553   cuni 4861   ciun 4944   ciin 4945  Disj wdisj 5062   class class class wbr 5095  cfv 6486  ωcom 7806  cdom 8877  Fincfn 8879  ficfi 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-2o 8396  df-en 8880  df-dom 8881  df-fin 8883  df-fi 9320
This theorem is referenced by:  sigapildsys  34128
  Copyright terms: Public domain W3C validator