Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsyslem Structured version   Visualization version   GIF version

Theorem sigapildsyslem 33154
Description: Lemma for sigapildsys 33155. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
sigapildsyslem.n 𝑛𝜑
sigapildsyslem.1 (𝜑𝑡 ∈ (𝑃𝐿))
sigapildsyslem.2 (𝜑𝐴𝑡)
sigapildsyslem.3 (𝜑𝑁 ∈ Fin)
sigapildsyslem.4 ((𝜑𝑛𝑁) → 𝐵𝑡)
Assertion
Ref Expression
sigapildsyslem (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦   𝑛,𝐿,𝑡,𝑥,𝑦   𝑂,𝑠,𝑡,𝑥   𝑃,𝑛,𝑡,𝑥,𝑦   𝐴,𝑛   𝑥,𝐵   𝑛,𝑁,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝐴(𝑥,𝑦,𝑡,𝑠)   𝐵(𝑦,𝑡,𝑛,𝑠)   𝑃(𝑠)   𝐿(𝑠)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑦,𝑛)

Proof of Theorem sigapildsyslem
StepHypRef Expression
1 iuneq1 5013 . . . . . . 7 (𝑁 = ∅ → 𝑛𝑁 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 5066 . . . . . . 7 𝑛 ∈ ∅ 𝐵 = ∅
31, 2eqtrdi 2788 . . . . . 6 (𝑁 = ∅ → 𝑛𝑁 𝐵 = ∅)
43difeq2d 4122 . . . . 5 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = (𝐴 ∖ ∅))
5 dif0 4372 . . . . 5 (𝐴 ∖ ∅) = 𝐴
64, 5eqtrdi 2788 . . . 4 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = 𝐴)
76adantl 482 . . 3 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) = 𝐴)
8 sigapildsyslem.2 . . . 4 (𝜑𝐴𝑡)
98adantr 481 . . 3 ((𝜑𝑁 = ∅) → 𝐴𝑡)
107, 9eqeltrd 2833 . 2 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
11 iindif2 5080 . . . 4 (𝑁 ≠ ∅ → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
1211adantl 482 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
13 sigapildsyslem.1 . . . . . . . 8 (𝜑𝑡 ∈ (𝑃𝐿))
1413adantr 481 . . . . . . 7 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ (𝑃𝐿))
1514elin1d 4198 . . . . . 6 ((𝜑𝑁 ≠ ∅) → 𝑡𝑃)
16 dynkin.p . . . . . . 7 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
1716ispisys 33145 . . . . . 6 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1815, 17sylib 217 . . . . 5 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1918simprd 496 . . . 4 ((𝜑𝑁 ≠ ∅) → (fi‘𝑡) ⊆ 𝑡)
20 sigapildsyslem.n . . . . . . 7 𝑛𝜑
21 nfv 1917 . . . . . . 7 𝑛 𝑁 ≠ ∅
2220, 21nfan 1902 . . . . . 6 𝑛(𝜑𝑁 ≠ ∅)
2318simpld 495 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ 𝒫 𝒫 𝑂)
2423elpwid 4611 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝑡 ⊆ 𝒫 𝑂)
258adantr 481 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝐴𝑡)
2624, 25sseldd 3983 . . . . . . . . . . 11 ((𝜑𝑁 ≠ ∅) → 𝐴 ∈ 𝒫 𝑂)
2726elpwid 4611 . . . . . . . . . 10 ((𝜑𝑁 ≠ ∅) → 𝐴𝑂)
2827adantr 481 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑂)
29 difin2 4291 . . . . . . . . 9 (𝐴𝑂 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3028, 29syl 17 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3119adantr 481 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (fi‘𝑡) ⊆ 𝑡)
3214adantr 481 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝑡 ∈ (𝑃𝐿))
3314elin2d 4199 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ≠ ∅) → 𝑡𝐿)
34 dynkin.l . . . . . . . . . . . . . . . 16 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3534isldsys 33149 . . . . . . . . . . . . . . 15 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3633, 35sylib 217 . . . . . . . . . . . . . 14 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3736simprd 496 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
3837simp2d 1143 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
3938adantr 481 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
40 sigapildsyslem.4 . . . . . . . . . . . . 13 ((𝜑𝑛𝑁) → 𝐵𝑡)
4140adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐵𝑡)
42 nfv 1917 . . . . . . . . . . . . 13 𝑥(𝑂𝐵) ∈ 𝑡
43 difeq2 4116 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑂𝑥) = (𝑂𝐵))
4443eleq1d 2818 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐵) ∈ 𝑡))
4542, 44rspc 3600 . . . . . . . . . . . 12 (𝐵𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4641, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4739, 46mpd 15 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝑂𝐵) ∈ 𝑡)
4825adantr 481 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑡)
49 inelfi 9412 . . . . . . . . . 10 ((𝑡 ∈ (𝑃𝐿) ∧ (𝑂𝐵) ∈ 𝑡𝐴𝑡) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5032, 47, 48, 49syl3anc 1371 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5131, 50sseldd 3983 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ 𝑡)
5230, 51eqeltrd 2833 . . . . . . 7 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) ∈ 𝑡)
5352ex 413 . . . . . 6 ((𝜑𝑁 ≠ ∅) → (𝑛𝑁 → (𝐴𝐵) ∈ 𝑡))
5422, 53ralrimi 3254 . . . . 5 ((𝜑𝑁 ≠ ∅) → ∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
55 simpr 485 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ≠ ∅)
56 sigapildsyslem.3 . . . . . 6 (𝜑𝑁 ∈ Fin)
5756adantr 481 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ∈ Fin)
58 vex 3478 . . . . . 6 𝑡 ∈ V
59 iinfi 9411 . . . . . 6 ((𝑡 ∈ V ∧ (∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6058, 59mpan 688 . . . . 5 ((∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6154, 55, 57, 60syl3anc 1371 . . . 4 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6219, 61sseldd 3983 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
6312, 62eqeltrrd 2834 . 2 ((𝜑𝑁 ≠ ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
6410, 63pm2.61dane 3029 1 (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wnf 1785  wcel 2106  wne 2940  wral 3061  {crab 3432  Vcvv 3474  cdif 3945  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602   cuni 4908   ciun 4997   ciin 4998  Disj wdisj 5113   class class class wbr 5148  cfv 6543  ωcom 7854  cdom 8936  Fincfn 8938  ficfi 9404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-om 7855  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-fin 8942  df-fi 9405
This theorem is referenced by:  sigapildsys  33155
  Copyright terms: Public domain W3C validator