Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsyslem Structured version   Visualization version   GIF version

Theorem sigapildsyslem 33454
Description: Lemma for sigapildsys 33455. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
sigapildsyslem.n 𝑛𝜑
sigapildsyslem.1 (𝜑𝑡 ∈ (𝑃𝐿))
sigapildsyslem.2 (𝜑𝐴𝑡)
sigapildsyslem.3 (𝜑𝑁 ∈ Fin)
sigapildsyslem.4 ((𝜑𝑛𝑁) → 𝐵𝑡)
Assertion
Ref Expression
sigapildsyslem (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦   𝑛,𝐿,𝑡,𝑥,𝑦   𝑂,𝑠,𝑡,𝑥   𝑃,𝑛,𝑡,𝑥,𝑦   𝐴,𝑛   𝑥,𝐵   𝑛,𝑁,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝐴(𝑥,𝑦,𝑡,𝑠)   𝐵(𝑦,𝑡,𝑛,𝑠)   𝑃(𝑠)   𝐿(𝑠)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑦,𝑛)

Proof of Theorem sigapildsyslem
StepHypRef Expression
1 iuneq1 5014 . . . . . . 7 (𝑁 = ∅ → 𝑛𝑁 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 5067 . . . . . . 7 𝑛 ∈ ∅ 𝐵 = ∅
31, 2eqtrdi 2787 . . . . . 6 (𝑁 = ∅ → 𝑛𝑁 𝐵 = ∅)
43difeq2d 4123 . . . . 5 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = (𝐴 ∖ ∅))
5 dif0 4373 . . . . 5 (𝐴 ∖ ∅) = 𝐴
64, 5eqtrdi 2787 . . . 4 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = 𝐴)
76adantl 481 . . 3 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) = 𝐴)
8 sigapildsyslem.2 . . . 4 (𝜑𝐴𝑡)
98adantr 480 . . 3 ((𝜑𝑁 = ∅) → 𝐴𝑡)
107, 9eqeltrd 2832 . 2 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
11 iindif2 5081 . . . 4 (𝑁 ≠ ∅ → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
1211adantl 481 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
13 sigapildsyslem.1 . . . . . . . 8 (𝜑𝑡 ∈ (𝑃𝐿))
1413adantr 480 . . . . . . 7 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ (𝑃𝐿))
1514elin1d 4199 . . . . . 6 ((𝜑𝑁 ≠ ∅) → 𝑡𝑃)
16 dynkin.p . . . . . . 7 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
1716ispisys 33445 . . . . . 6 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1815, 17sylib 217 . . . . 5 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1918simprd 495 . . . 4 ((𝜑𝑁 ≠ ∅) → (fi‘𝑡) ⊆ 𝑡)
20 sigapildsyslem.n . . . . . . 7 𝑛𝜑
21 nfv 1916 . . . . . . 7 𝑛 𝑁 ≠ ∅
2220, 21nfan 1901 . . . . . 6 𝑛(𝜑𝑁 ≠ ∅)
2318simpld 494 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ 𝒫 𝒫 𝑂)
2423elpwid 4612 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝑡 ⊆ 𝒫 𝑂)
258adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝐴𝑡)
2624, 25sseldd 3984 . . . . . . . . . . 11 ((𝜑𝑁 ≠ ∅) → 𝐴 ∈ 𝒫 𝑂)
2726elpwid 4612 . . . . . . . . . 10 ((𝜑𝑁 ≠ ∅) → 𝐴𝑂)
2827adantr 480 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑂)
29 difin2 4292 . . . . . . . . 9 (𝐴𝑂 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3028, 29syl 17 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3119adantr 480 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (fi‘𝑡) ⊆ 𝑡)
3214adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝑡 ∈ (𝑃𝐿))
3314elin2d 4200 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ≠ ∅) → 𝑡𝐿)
34 dynkin.l . . . . . . . . . . . . . . . 16 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3534isldsys 33449 . . . . . . . . . . . . . . 15 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3633, 35sylib 217 . . . . . . . . . . . . . 14 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3736simprd 495 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
3837simp2d 1142 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
3938adantr 480 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
40 sigapildsyslem.4 . . . . . . . . . . . . 13 ((𝜑𝑛𝑁) → 𝐵𝑡)
4140adantlr 712 . . . . . . . . . . . 12 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐵𝑡)
42 nfv 1916 . . . . . . . . . . . . 13 𝑥(𝑂𝐵) ∈ 𝑡
43 difeq2 4117 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑂𝑥) = (𝑂𝐵))
4443eleq1d 2817 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐵) ∈ 𝑡))
4542, 44rspc 3601 . . . . . . . . . . . 12 (𝐵𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4641, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4739, 46mpd 15 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝑂𝐵) ∈ 𝑡)
4825adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑡)
49 inelfi 9416 . . . . . . . . . 10 ((𝑡 ∈ (𝑃𝐿) ∧ (𝑂𝐵) ∈ 𝑡𝐴𝑡) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5032, 47, 48, 49syl3anc 1370 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5131, 50sseldd 3984 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ 𝑡)
5230, 51eqeltrd 2832 . . . . . . 7 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) ∈ 𝑡)
5352ex 412 . . . . . 6 ((𝜑𝑁 ≠ ∅) → (𝑛𝑁 → (𝐴𝐵) ∈ 𝑡))
5422, 53ralrimi 3253 . . . . 5 ((𝜑𝑁 ≠ ∅) → ∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
55 simpr 484 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ≠ ∅)
56 sigapildsyslem.3 . . . . . 6 (𝜑𝑁 ∈ Fin)
5756adantr 480 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ∈ Fin)
58 vex 3477 . . . . . 6 𝑡 ∈ V
59 iinfi 9415 . . . . . 6 ((𝑡 ∈ V ∧ (∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6058, 59mpan 687 . . . . 5 ((∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6154, 55, 57, 60syl3anc 1370 . . . 4 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6219, 61sseldd 3984 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
6312, 62eqeltrrd 2833 . 2 ((𝜑𝑁 ≠ ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
6410, 63pm2.61dane 3028 1 (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1784  wcel 2105  wne 2939  wral 3060  {crab 3431  Vcvv 3473  cdif 3946  cin 3948  wss 3949  c0 4323  𝒫 cpw 4603   cuni 4909   ciun 4998   ciin 4999  Disj wdisj 5114   class class class wbr 5149  cfv 6544  ωcom 7858  cdom 8940  Fincfn 8942  ficfi 9408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7859  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-fin 8946  df-fi 9409
This theorem is referenced by:  sigapildsys  33455
  Copyright terms: Public domain W3C validator