| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigapisys | Structured version Visualization version GIF version | ||
| Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.) |
| Ref | Expression |
|---|---|
| ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
| Ref | Expression |
|---|---|
| sigapisys | ⊢ (sigAlgebra‘𝑂) ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sigasspw 34112 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂) | |
| 2 | velpw 4570 | . . . . 5 ⊢ (𝑡 ∈ 𝒫 𝒫 𝑂 ↔ 𝑡 ⊆ 𝒫 𝑂) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂) |
| 4 | elrnsiga 34122 | . . . . . . 7 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ ∪ ran sigAlgebra) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑡 ∈ ∪ ran sigAlgebra) |
| 6 | eldifsn 4752 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) | |
| 7 | 6 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) |
| 9 | 8 | simpld 494 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (𝒫 𝑡 ∩ Fin)) |
| 10 | 9 | elin1d 4169 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ 𝒫 𝑡) |
| 11 | 9 | elin2d 4170 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ Fin) |
| 12 | fict 9612 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ≼ ω) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≼ ω) |
| 14 | 8 | simprd 495 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≠ ∅) |
| 15 | sigaclci 34128 | . . . . . 6 ⊢ (((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ 𝑥 ≠ ∅)) → ∩ 𝑥 ∈ 𝑡) | |
| 16 | 5, 10, 13, 14, 15 | syl22anc 838 | . . . . 5 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → ∩ 𝑥 ∈ 𝑡) |
| 17 | 16 | ralrimiva 3126 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡) |
| 18 | 3, 17 | jca 511 | . . 3 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡)) |
| 19 | ispisys.p | . . . 4 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
| 20 | 19 | ispisys2 34149 | . . 3 ⊢ (𝑡 ∈ 𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡)) |
| 21 | 18, 20 | sylibr 234 | . 2 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝑃) |
| 22 | 21 | ssriv 3952 | 1 ⊢ (sigAlgebra‘𝑂) ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 {crab 3408 ∖ cdif 3913 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 𝒫 cpw 4565 {csn 4591 ∪ cuni 4873 ∩ cint 4912 class class class wbr 5109 ran crn 5641 ‘cfv 6513 ωcom 7844 ≼ cdom 8918 Fincfn 8920 ficfi 9367 sigAlgebracsiga 34104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-ac2 10422 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fi 9368 df-card 9898 df-acn 9901 df-ac 10075 df-siga 34105 |
| This theorem is referenced by: sigapildsys 34158 |
| Copyright terms: Public domain | W3C validator |