![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigapisys | Structured version Visualization version GIF version |
Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.) |
Ref | Expression |
---|---|
ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
Ref | Expression |
---|---|
sigapisys | ⊢ (sigAlgebra‘𝑂) ⊆ 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigasspw 34072 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂) | |
2 | velpw 4627 | . . . . 5 ⊢ (𝑡 ∈ 𝒫 𝒫 𝑂 ↔ 𝑡 ⊆ 𝒫 𝑂) | |
3 | 1, 2 | sylibr 234 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂) |
4 | elrnsiga 34082 | . . . . . . 7 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ ∪ ran sigAlgebra) | |
5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑡 ∈ ∪ ran sigAlgebra) |
6 | eldifsn 4811 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) | |
7 | 6 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) |
9 | 8 | simpld 494 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (𝒫 𝑡 ∩ Fin)) |
10 | 9 | elin1d 4221 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ 𝒫 𝑡) |
11 | 9 | elin2d 4222 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ Fin) |
12 | fict 9718 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ≼ ω) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≼ ω) |
14 | 8 | simprd 495 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≠ ∅) |
15 | sigaclci 34088 | . . . . . 6 ⊢ (((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ 𝑥 ≠ ∅)) → ∩ 𝑥 ∈ 𝑡) | |
16 | 5, 10, 13, 14, 15 | syl22anc 838 | . . . . 5 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → ∩ 𝑥 ∈ 𝑡) |
17 | 16 | ralrimiva 3148 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡) |
18 | 3, 17 | jca 511 | . . 3 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡)) |
19 | ispisys.p | . . . 4 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
20 | 19 | ispisys2 34109 | . . 3 ⊢ (𝑡 ∈ 𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡)) |
21 | 18, 20 | sylibr 234 | . 2 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝑃) |
22 | 21 | ssriv 4006 | 1 ⊢ (sigAlgebra‘𝑂) ⊆ 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ∀wral 3063 {crab 3438 ∖ cdif 3967 ∩ cin 3969 ⊆ wss 3970 ∅c0 4347 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ∩ cint 4972 class class class wbr 5169 ran crn 5700 ‘cfv 6572 ωcom 7899 ≼ cdom 8997 Fincfn 8999 ficfi 9475 sigAlgebracsiga 34064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-ac2 10528 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-iin 5022 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-map 8882 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-fi 9476 df-card 10004 df-acn 10007 df-ac 10181 df-siga 34065 |
This theorem is referenced by: sigapildsys 34118 |
Copyright terms: Public domain | W3C validator |