Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigapisys | Structured version Visualization version GIF version |
Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.) |
Ref | Expression |
---|---|
ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
Ref | Expression |
---|---|
sigapisys | ⊢ (sigAlgebra‘𝑂) ⊆ 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigasspw 31667 | . . . . 5 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂) | |
2 | velpw 4503 | . . . . 5 ⊢ (𝑡 ∈ 𝒫 𝒫 𝑂 ↔ 𝑡 ⊆ 𝒫 𝑂) | |
3 | 1, 2 | sylibr 237 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂) |
4 | elrnsiga 31677 | . . . . . . 7 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ ∪ ran sigAlgebra) | |
5 | 4 | adantr 484 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑡 ∈ ∪ ran sigAlgebra) |
6 | eldifsn 4685 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) | |
7 | 6 | biimpi 219 | . . . . . . . . 9 ⊢ (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) |
8 | 7 | adantl 485 | . . . . . . . 8 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅)) |
9 | 8 | simpld 498 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (𝒫 𝑡 ∩ Fin)) |
10 | 9 | elin1d 4098 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ 𝒫 𝑡) |
11 | 9 | elin2d 4099 | . . . . . . 7 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ Fin) |
12 | fict 9202 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → 𝑥 ≼ ω) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≼ ω) |
14 | 8 | simprd 499 | . . . . . 6 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≠ ∅) |
15 | sigaclci 31683 | . . . . . 6 ⊢ (((𝑡 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ 𝑥 ≠ ∅)) → ∩ 𝑥 ∈ 𝑡) | |
16 | 5, 10, 13, 14, 15 | syl22anc 838 | . . . . 5 ⊢ ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → ∩ 𝑥 ∈ 𝑡) |
17 | 16 | ralrimiva 3097 | . . . 4 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡) |
18 | 3, 17 | jca 515 | . . 3 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡)) |
19 | ispisys.p | . . . 4 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
20 | 19 | ispisys2 31704 | . . 3 ⊢ (𝑡 ∈ 𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})∩ 𝑥 ∈ 𝑡)) |
21 | 18, 20 | sylibr 237 | . 2 ⊢ (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝑃) |
22 | 21 | ssriv 3891 | 1 ⊢ (sigAlgebra‘𝑂) ⊆ 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∀wral 3054 {crab 3058 ∖ cdif 3850 ∩ cin 3852 ⊆ wss 3853 ∅c0 4221 𝒫 cpw 4498 {csn 4526 ∪ cuni 4806 ∩ cint 4846 class class class wbr 5040 ran crn 5536 ‘cfv 6350 ωcom 7612 ≼ cdom 8566 Fincfn 8568 ficfi 8960 sigAlgebracsiga 31659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-inf2 9190 ax-ac2 9976 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-iin 4894 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-se 5494 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-isom 6359 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-om 7613 df-1st 7727 df-2nd 7728 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-1o 8144 df-er 8333 df-map 8452 df-en 8569 df-dom 8570 df-sdom 8571 df-fin 8572 df-fi 8961 df-card 9454 df-acn 9457 df-ac 9629 df-siga 31660 |
This theorem is referenced by: sigapildsys 31713 |
Copyright terms: Public domain | W3C validator |