Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapisys Structured version   Visualization version   GIF version

Theorem sigapisys 33466
Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
sigapisys (sigAlgebra‘𝑂) ⊆ 𝑃
Distinct variable group:   𝑂,𝑠
Allowed substitution hint:   𝑃(𝑠)

Proof of Theorem sigapisys
Dummy variables 𝑡 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sigasspw 33427 . . . . 5 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ⊆ 𝒫 𝑂)
2 velpw 4607 . . . . 5 (𝑡 ∈ 𝒫 𝒫 𝑂𝑡 ⊆ 𝒫 𝑂)
31, 2sylibr 233 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ∈ 𝒫 𝒫 𝑂)
4 elrnsiga 33437 . . . . . . 7 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡 ran sigAlgebra)
54adantr 480 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑡 ran sigAlgebra)
6 eldifsn 4790 . . . . . . . . . 10 (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅))
76biimpi 215 . . . . . . . . 9 (𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅))
87adantl 481 . . . . . . . 8 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → (𝑥 ∈ (𝒫 𝑡 ∩ Fin) ∧ 𝑥 ≠ ∅))
98simpld 494 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (𝒫 𝑡 ∩ Fin))
109elin1d 4198 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ 𝒫 𝑡)
119elin2d 4199 . . . . . . 7 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ∈ Fin)
12 fict 9654 . . . . . . 7 (𝑥 ∈ Fin → 𝑥 ≼ ω)
1311, 12syl 17 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≼ ω)
148simprd 495 . . . . . 6 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥 ≠ ∅)
15 sigaclci 33443 . . . . . 6 (((𝑡 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ 𝑥 ≠ ∅)) → 𝑥𝑡)
165, 10, 13, 14, 15syl22anc 836 . . . . 5 ((𝑡 ∈ (sigAlgebra‘𝑂) ∧ 𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅})) → 𝑥𝑡)
1716ralrimiva 3145 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) → ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) 𝑥𝑡)
183, 17jca 511 . . 3 (𝑡 ∈ (sigAlgebra‘𝑂) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) 𝑥𝑡))
19 ispisys.p . . . 4 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2019ispisys2 33464 . . 3 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑡 ∩ Fin) ∖ {∅}) 𝑥𝑡))
2118, 20sylibr 233 . 2 (𝑡 ∈ (sigAlgebra‘𝑂) → 𝑡𝑃)
2221ssriv 3986 1 (sigAlgebra‘𝑂) ⊆ 𝑃
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2105  wne 2939  wral 3060  {crab 3431  cdif 3945  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   cuni 4908   cint 4950   class class class wbr 5148  ran crn 5677  cfv 6543  ωcom 7859  cdom 8943  Fincfn 8945  ficfi 9411  sigAlgebracsiga 33419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-ac2 10464
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fi 9412  df-card 9940  df-acn 9943  df-ac 10117  df-siga 33420
This theorem is referenced by:  sigapildsys  33473
  Copyright terms: Public domain W3C validator