Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapisys Structured version   Visualization version   GIF version

Theorem sigapisys 33844
Description: All sigma-algebras are pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fiβ€˜π‘ ) βŠ† 𝑠}
Assertion
Ref Expression
sigapisys (sigAlgebraβ€˜π‘‚) βŠ† 𝑃
Distinct variable group:   𝑂,𝑠
Allowed substitution hint:   𝑃(𝑠)

Proof of Theorem sigapisys
Dummy variables 𝑑 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sigasspw 33805 . . . . 5 (𝑑 ∈ (sigAlgebraβ€˜π‘‚) β†’ 𝑑 βŠ† 𝒫 𝑂)
2 velpw 4608 . . . . 5 (𝑑 ∈ 𝒫 𝒫 𝑂 ↔ 𝑑 βŠ† 𝒫 𝑂)
31, 2sylibr 233 . . . 4 (𝑑 ∈ (sigAlgebraβ€˜π‘‚) β†’ 𝑑 ∈ 𝒫 𝒫 𝑂)
4 elrnsiga 33815 . . . . . . 7 (𝑑 ∈ (sigAlgebraβ€˜π‘‚) β†’ 𝑑 ∈ βˆͺ ran sigAlgebra)
54adantr 479 . . . . . 6 ((𝑑 ∈ (sigAlgebraβ€˜π‘‚) ∧ π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})) β†’ 𝑑 ∈ βˆͺ ran sigAlgebra)
6 eldifsn 4791 . . . . . . . . . 10 (π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…}) ↔ (π‘₯ ∈ (𝒫 𝑑 ∩ Fin) ∧ π‘₯ β‰  βˆ…))
76biimpi 215 . . . . . . . . 9 (π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…}) β†’ (π‘₯ ∈ (𝒫 𝑑 ∩ Fin) ∧ π‘₯ β‰  βˆ…))
87adantl 480 . . . . . . . 8 ((𝑑 ∈ (sigAlgebraβ€˜π‘‚) ∧ π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})) β†’ (π‘₯ ∈ (𝒫 𝑑 ∩ Fin) ∧ π‘₯ β‰  βˆ…))
98simpld 493 . . . . . . 7 ((𝑑 ∈ (sigAlgebraβ€˜π‘‚) ∧ π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})) β†’ π‘₯ ∈ (𝒫 𝑑 ∩ Fin))
109elin1d 4197 . . . . . 6 ((𝑑 ∈ (sigAlgebraβ€˜π‘‚) ∧ π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})) β†’ π‘₯ ∈ 𝒫 𝑑)
119elin2d 4198 . . . . . . 7 ((𝑑 ∈ (sigAlgebraβ€˜π‘‚) ∧ π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})) β†’ π‘₯ ∈ Fin)
12 fict 9676 . . . . . . 7 (π‘₯ ∈ Fin β†’ π‘₯ β‰Ό Ο‰)
1311, 12syl 17 . . . . . 6 ((𝑑 ∈ (sigAlgebraβ€˜π‘‚) ∧ π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})) β†’ π‘₯ β‰Ό Ο‰)
148simprd 494 . . . . . 6 ((𝑑 ∈ (sigAlgebraβ€˜π‘‚) ∧ π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})) β†’ π‘₯ β‰  βˆ…)
15 sigaclci 33821 . . . . . 6 (((𝑑 ∈ βˆͺ ran sigAlgebra ∧ π‘₯ ∈ 𝒫 𝑑) ∧ (π‘₯ β‰Ό Ο‰ ∧ π‘₯ β‰  βˆ…)) β†’ ∩ π‘₯ ∈ 𝑑)
165, 10, 13, 14, 15syl22anc 837 . . . . 5 ((𝑑 ∈ (sigAlgebraβ€˜π‘‚) ∧ π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})) β†’ ∩ π‘₯ ∈ 𝑑)
1716ralrimiva 3136 . . . 4 (𝑑 ∈ (sigAlgebraβ€˜π‘‚) β†’ βˆ€π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})∩ π‘₯ ∈ 𝑑)
183, 17jca 510 . . 3 (𝑑 ∈ (sigAlgebraβ€˜π‘‚) β†’ (𝑑 ∈ 𝒫 𝒫 𝑂 ∧ βˆ€π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})∩ π‘₯ ∈ 𝑑))
19 ispisys.p . . . 4 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fiβ€˜π‘ ) βŠ† 𝑠}
2019ispisys2 33842 . . 3 (𝑑 ∈ 𝑃 ↔ (𝑑 ∈ 𝒫 𝒫 𝑂 ∧ βˆ€π‘₯ ∈ ((𝒫 𝑑 ∩ Fin) βˆ– {βˆ…})∩ π‘₯ ∈ 𝑑))
2118, 20sylibr 233 . 2 (𝑑 ∈ (sigAlgebraβ€˜π‘‚) β†’ 𝑑 ∈ 𝑃)
2221ssriv 3981 1 (sigAlgebraβ€˜π‘‚) βŠ† 𝑃
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  {crab 3419   βˆ– cdif 3942   ∩ cin 3944   βŠ† wss 3945  βˆ…c0 4323  π’« cpw 4603  {csn 4629  βˆͺ cuni 4908  βˆ© cint 4949   class class class wbr 5148  ran crn 5678  β€˜cfv 6547  Ο‰com 7869   β‰Ό cdom 8960  Fincfn 8962  ficfi 9433  sigAlgebracsiga 33797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-ac2 10486
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fi 9434  df-card 9962  df-acn 9965  df-ac 10139  df-siga 33798
This theorem is referenced by:  sigapildsys  33851
  Copyright terms: Public domain W3C validator