![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismgmd | Structured version Visualization version GIF version |
Description: Deduce a magma from its properties. (Contributed by AV, 25-Feb-2020.) |
Ref | Expression |
---|---|
ismgmd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
ismgmd.0 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
ismgmd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
ismgmd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) |
Ref | Expression |
---|---|
ismgmd | ⊢ (𝜑 → 𝐺 ∈ Mgm) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | |
2 | 1 | 3expb 1119 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
3 | 2 | ralrimivva 3200 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) |
4 | ismgmd.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
5 | ismgmd.p | . . . . . . 7 ⊢ (𝜑 → + = (+g‘𝐺)) | |
6 | 5 | oveqd 7448 | . . . . . 6 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐺)𝑦)) |
7 | 6, 4 | eleq12d 2833 | . . . . 5 ⊢ (𝜑 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺))) |
8 | 4, 7 | raleqbidv 3344 | . . . 4 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵 ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺))) |
9 | 4, 8 | raleqbidv 3344 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵 ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺))) |
10 | 3, 9 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
11 | ismgmd.0 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
12 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
13 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
14 | 12, 13 | ismgm 18667 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (𝐺 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺))) |
15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺))) |
16 | 10, 15 | mpbird 257 | 1 ⊢ (𝜑 → 𝐺 ∈ Mgm) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Mgmcmgm 18664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-mgm 18666 |
This theorem is referenced by: issubmgm2 18729 |
Copyright terms: Public domain | W3C validator |