| Step | Hyp | Ref
| Expression |
| 1 | | issubmgm2.b |
. . 3
⊢ 𝐵 = (Base‘𝑀) |
| 2 | | eqid 2737 |
. . 3
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 3 | 1, 2 | issubmgm 18715 |
. 2
⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 4 | | issubmgm2.h |
. . . . . . 7
⊢ 𝐻 = (𝑀 ↾s 𝑆) |
| 5 | 4, 1 | ressbas2 17283 |
. . . . . 6
⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐻)) |
| 6 | 5 | ad2antlr 727 |
. . . . 5
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
| 7 | | ovex 7464 |
. . . . . . 7
⊢ (𝑀 ↾s 𝑆) ∈ V |
| 8 | 4, 7 | eqeltri 2837 |
. . . . . 6
⊢ 𝐻 ∈ V |
| 9 | 8 | a1i 11 |
. . . . 5
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ V) |
| 10 | 1 | fvexi 6920 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
| 11 | 10 | ssex 5321 |
. . . . . . 7
⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
| 12 | 11 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → 𝑆 ∈ V) |
| 13 | 4, 2 | ressplusg 17334 |
. . . . . 6
⊢ (𝑆 ∈ V →
(+g‘𝑀) =
(+g‘𝐻)) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → (+g‘𝑀) = (+g‘𝐻)) |
| 15 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥(+g‘𝑀)𝑦) = (𝑎(+g‘𝑀)𝑦)) |
| 16 | 15 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g‘𝑀)𝑦) ∈ 𝑆)) |
| 17 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → (𝑎(+g‘𝑀)𝑦) = (𝑎(+g‘𝑀)𝑏)) |
| 18 | 17 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑦 = 𝑏 → ((𝑎(+g‘𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g‘𝑀)𝑏) ∈ 𝑆)) |
| 19 | 16, 18 | rspc2v 3633 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 → (𝑎(+g‘𝑀)𝑏) ∈ 𝑆)) |
| 20 | 19 | com12 32 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 → ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝑀)𝑏) ∈ 𝑆)) |
| 21 | 20 | adantl 481 |
. . . . . 6
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝑀)𝑏) ∈ 𝑆)) |
| 22 | 21 | 3impib 1117 |
. . . . 5
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝑀)𝑏) ∈ 𝑆) |
| 23 | 6, 9, 14, 22 | ismgmd 18665 |
. . . 4
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm) |
| 24 | | simplr 769 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐻 ∈ Mgm) |
| 25 | | simprl 771 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
| 26 | 5 | ad3antlr 731 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 = (Base‘𝐻)) |
| 27 | 25, 26 | eleqtrd 2843 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (Base‘𝐻)) |
| 28 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
| 29 | 28 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
| 30 | 29, 26 | eleqtrd 2843 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ (Base‘𝐻)) |
| 31 | | eqid 2737 |
. . . . . . . 8
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 32 | | eqid 2737 |
. . . . . . . 8
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 33 | 31, 32 | mgmcl 18656 |
. . . . . . 7
⊢ ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐻)𝑦) ∈ (Base‘𝐻)) |
| 34 | 24, 27, 30, 33 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐻)𝑦) ∈ (Base‘𝐻)) |
| 35 | 11 | ad2antlr 727 |
. . . . . . . 8
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 ∈ V) |
| 36 | 35, 13 | syl 17 |
. . . . . . 7
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) →
(+g‘𝑀) =
(+g‘𝐻)) |
| 37 | 36 | oveqdr 7459 |
. . . . . 6
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 38 | 34, 37, 26 | 3eltr4d 2856 |
. . . . 5
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) |
| 39 | 38 | ralrimivva 3202 |
. . . 4
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) |
| 40 | 23, 39 | impbida 801 |
. . 3
⊢ ((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ 𝐻 ∈ Mgm)) |
| 41 | 40 | pm5.32da 579 |
. 2
⊢ (𝑀 ∈ Mgm → ((𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm))) |
| 42 | 3, 41 | bitrd 279 |
1
⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm))) |