Step | Hyp | Ref
| Expression |
1 | | issubmgm2.b |
. . 3
⊢ 𝐵 = (Base‘𝑀) |
2 | | eqid 2738 |
. . 3
⊢
(+g‘𝑀) = (+g‘𝑀) |
3 | 1, 2 | issubmgm 45343 |
. 2
⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
4 | | issubmgm2.h |
. . . . . . 7
⊢ 𝐻 = (𝑀 ↾s 𝑆) |
5 | 4, 1 | ressbas2 16949 |
. . . . . 6
⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘𝐻)) |
6 | 5 | ad2antlr 724 |
. . . . 5
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻)) |
7 | | ovex 7308 |
. . . . . . 7
⊢ (𝑀 ↾s 𝑆) ∈ V |
8 | 4, 7 | eqeltri 2835 |
. . . . . 6
⊢ 𝐻 ∈ V |
9 | 8 | a1i 11 |
. . . . 5
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ V) |
10 | 1 | fvexi 6788 |
. . . . . . . 8
⊢ 𝐵 ∈ V |
11 | 10 | ssex 5245 |
. . . . . . 7
⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
12 | 11 | ad2antlr 724 |
. . . . . 6
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → 𝑆 ∈ V) |
13 | 4, 2 | ressplusg 17000 |
. . . . . 6
⊢ (𝑆 ∈ V →
(+g‘𝑀) =
(+g‘𝐻)) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → (+g‘𝑀) = (+g‘𝐻)) |
15 | | oveq1 7282 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑎 → (𝑥(+g‘𝑀)𝑦) = (𝑎(+g‘𝑀)𝑦)) |
16 | 15 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → ((𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g‘𝑀)𝑦) ∈ 𝑆)) |
17 | | oveq2 7283 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑏 → (𝑎(+g‘𝑀)𝑦) = (𝑎(+g‘𝑀)𝑏)) |
18 | 17 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑦 = 𝑏 → ((𝑎(+g‘𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g‘𝑀)𝑏) ∈ 𝑆)) |
19 | 16, 18 | rspc2v 3570 |
. . . . . . . 8
⊢ ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 → (𝑎(+g‘𝑀)𝑏) ∈ 𝑆)) |
20 | 19 | com12 32 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 → ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝑀)𝑏) ∈ 𝑆)) |
21 | 20 | adantl 482 |
. . . . . 6
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → ((𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝑀)𝑏) ∈ 𝑆)) |
22 | 21 | 3impib 1115 |
. . . . 5
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ∧ 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆) → (𝑎(+g‘𝑀)𝑏) ∈ 𝑆) |
23 | 6, 9, 14, 22 | ismgmd 45330 |
. . . 4
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm) |
24 | | simplr 766 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝐻 ∈ Mgm) |
25 | | simprl 768 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
26 | 5 | ad3antlr 728 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑆 = (Base‘𝐻)) |
27 | 25, 26 | eleqtrd 2841 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (Base‘𝐻)) |
28 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) |
29 | 28 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
30 | 29, 26 | eleqtrd 2841 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ (Base‘𝐻)) |
31 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝐻) =
(Base‘𝐻) |
32 | | eqid 2738 |
. . . . . . . 8
⊢
(+g‘𝐻) = (+g‘𝐻) |
33 | 31, 32 | mgmcl 18329 |
. . . . . . 7
⊢ ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g‘𝐻)𝑦) ∈ (Base‘𝐻)) |
34 | 24, 27, 30, 33 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝐻)𝑦) ∈ (Base‘𝐻)) |
35 | 11 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 ∈ V) |
36 | 35, 13 | syl 17 |
. . . . . . 7
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) →
(+g‘𝑀) =
(+g‘𝐻)) |
37 | 36 | oveqdr 7303 |
. . . . . 6
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
38 | 34, 37, 26 | 3eltr4d 2854 |
. . . . 5
⊢ ((((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) |
39 | 38 | ralrimivva 3123 |
. . . 4
⊢ (((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) |
40 | 23, 39 | impbida 798 |
. . 3
⊢ ((𝑀 ∈ Mgm ∧ 𝑆 ⊆ 𝐵) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ 𝐻 ∈ Mgm)) |
41 | 40 | pm5.32da 579 |
. 2
⊢ (𝑀 ∈ Mgm → ((𝑆 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm))) |
42 | 3, 41 | bitrd 278 |
1
⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 𝐻 ∈ Mgm))) |