MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmgm2 Structured version   Visualization version   GIF version

Theorem issubmgm2 18623
Description: Submagmas are subsets that are also magmas. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
issubmgm2.b 𝐵 = (Base‘𝑀)
issubmgm2.h 𝐻 = (𝑀s 𝑆)
Assertion
Ref Expression
issubmgm2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵𝐻 ∈ Mgm)))

Proof of Theorem issubmgm2
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubmgm2.b . . 3 𝐵 = (Base‘𝑀)
2 eqid 2724 . . 3 (+g𝑀) = (+g𝑀)
31, 2issubmgm 18622 . 2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
4 issubmgm2.h . . . . . . 7 𝐻 = (𝑀s 𝑆)
54, 1ressbas2 17178 . . . . . 6 (𝑆𝐵𝑆 = (Base‘𝐻))
65ad2antlr 724 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻))
7 ovex 7434 . . . . . . 7 (𝑀s 𝑆) ∈ V
84, 7eqeltri 2821 . . . . . 6 𝐻 ∈ V
98a1i 11 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ V)
101fvexi 6895 . . . . . . . 8 𝐵 ∈ V
1110ssex 5311 . . . . . . 7 (𝑆𝐵𝑆 ∈ V)
1211ad2antlr 724 . . . . . 6 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝑆 ∈ V)
134, 2ressplusg 17231 . . . . . 6 (𝑆 ∈ V → (+g𝑀) = (+g𝐻))
1412, 13syl 17 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → (+g𝑀) = (+g𝐻))
15 oveq1 7408 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥(+g𝑀)𝑦) = (𝑎(+g𝑀)𝑦))
1615eleq1d 2810 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑥(+g𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g𝑀)𝑦) ∈ 𝑆))
17 oveq2 7409 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝑎(+g𝑀)𝑦) = (𝑎(+g𝑀)𝑏))
1817eleq1d 2810 . . . . . . . . 9 (𝑦 = 𝑏 → ((𝑎(+g𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g𝑀)𝑏) ∈ 𝑆))
1916, 18rspc2v 3614 . . . . . . . 8 ((𝑎𝑆𝑏𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆 → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
2019com12 32 . . . . . . 7 (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆 → ((𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
2120adantl 481 . . . . . 6 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → ((𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
22213impib 1113 . . . . 5 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ∧ 𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆)
236, 9, 14, 22ismgmd 18572 . . . 4 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm)
24 simplr 766 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mgm)
25 simprl 768 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
265ad3antlr 728 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
2725, 26eleqtrd 2827 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
28 simpr 484 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → 𝑦𝑆)
2928adantl 481 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
3029, 26eleqtrd 2827 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
31 eqid 2724 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2724 . . . . . . . 8 (+g𝐻) = (+g𝐻)
3331, 32mgmcl 18563 . . . . . . 7 ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3424, 27, 30, 33syl3anc 1368 . . . . . 6 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3511ad2antlr 724 . . . . . . . 8 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 ∈ V)
3635, 13syl 17 . . . . . . 7 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (+g𝑀) = (+g𝐻))
3736oveqdr 7429 . . . . . 6 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝑀)𝑦) = (𝑥(+g𝐻)𝑦))
3834, 37, 263eltr4d 2840 . . . . 5 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝑀)𝑦) ∈ 𝑆)
3938ralrimivva 3192 . . . 4 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
4023, 39impbida 798 . . 3 ((𝑀 ∈ Mgm ∧ 𝑆𝐵) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆𝐻 ∈ Mgm))
4140pm5.32da 578 . 2 (𝑀 ∈ Mgm → ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ (𝑆𝐵𝐻 ∈ Mgm)))
423, 41bitrd 279 1 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵𝐻 ∈ Mgm)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  wss 3940  cfv 6533  (class class class)co 7401  Basecbs 17140  s cress 17169  +gcplusg 17193  Mgmcmgm 18558  SubMgmcsubmgm 18611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mgm 18560  df-submgm 18613
This theorem is referenced by:  submgmss  18625  submgmid  18626  submgmmgm  18628  subsubmgm  18630
  Copyright terms: Public domain W3C validator