MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issstrmgm Structured version   Visualization version   GIF version

Theorem issstrmgm 18691
Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
issstrmgm.b 𝐵 = (Base‘𝐺)
issstrmgm.p + = (+g𝐺)
issstrmgm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issstrmgm ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem issstrmgm
StepHypRef Expression
1 simplr 768 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mgm)
2 simplr 768 . . . . . . . . . 10 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆𝐵)
3 issstrmgm.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
4 issstrmgm.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
53, 4ressbas2 17296 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
62, 5syl 17 . . . . . . . . 9 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 = (Base‘𝐻))
76eleq2d 2830 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
87biimpcd 249 . . . . . . 7 (𝑥𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
98adantr 480 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
109impcom 407 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
116eleq2d 2830 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑦𝑆𝑦 ∈ (Base‘𝐻)))
1211biimpcd 249 . . . . . . 7 (𝑦𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1312adantl 481 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1413impcom 407 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
15 eqid 2740 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2740 . . . . . 6 (+g𝐻) = (+g𝐻)
1715, 16mgmcl 18681 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
181, 10, 14, 17syl3anc 1371 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
194fvexi 6934 . . . . . . . . 9 𝐵 ∈ V
2019ssex 5339 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
2120adantl 481 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → 𝑆 ∈ V)
22 issstrmgm.p . . . . . . . 8 + = (+g𝐺)
233, 22ressplusg 17349 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2421, 23syl 17 . . . . . 6 ((𝐻𝑉𝑆𝐵) → + = (+g𝐻))
2524adantr 480 . . . . 5 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → + = (+g𝐻))
2625oveqdr 7476 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
276adantr 480 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
2818, 26, 273eltr4d 2859 . . 3 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2928ralrimivva 3208 . 2 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
305adantl 481 . . . . 5 ((𝐻𝑉𝑆𝐵) → 𝑆 = (Base‘𝐻))
3124oveqd 7465 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
3231, 30eleq12d 2838 . . . . . 6 ((𝐻𝑉𝑆𝐵) → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3330, 32raleqbidv 3354 . . . . 5 ((𝐻𝑉𝑆𝐵) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3430, 33raleqbidv 3354 . . . 4 ((𝐻𝑉𝑆𝐵) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3534biimpa 476 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3615, 16ismgm 18679 . . . 4 (𝐻𝑉 → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3736ad2antrr 725 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3835, 37mpbird 257 . 2 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm)
3929, 38impbida 800 1 ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  +gcplusg 17311  Mgmcmgm 18676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mgm 18678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator