MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issstrmgm Structured version   Visualization version   GIF version

Theorem issstrmgm 18562
Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
issstrmgm.b 𝐵 = (Base‘𝐺)
issstrmgm.p + = (+g𝐺)
issstrmgm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issstrmgm ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem issstrmgm
StepHypRef Expression
1 simplr 768 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mgm)
2 simplr 768 . . . . . . . . . 10 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆𝐵)
3 issstrmgm.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
4 issstrmgm.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
53, 4ressbas2 17184 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
62, 5syl 17 . . . . . . . . 9 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 = (Base‘𝐻))
76eleq2d 2814 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
87biimpcd 249 . . . . . . 7 (𝑥𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
98adantr 480 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
109impcom 407 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
116eleq2d 2814 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑦𝑆𝑦 ∈ (Base‘𝐻)))
1211biimpcd 249 . . . . . . 7 (𝑦𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1312adantl 481 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1413impcom 407 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
15 eqid 2729 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2729 . . . . . 6 (+g𝐻) = (+g𝐻)
1715, 16mgmcl 18552 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
181, 10, 14, 17syl3anc 1373 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
194fvexi 6854 . . . . . . . . 9 𝐵 ∈ V
2019ssex 5271 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
2120adantl 481 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → 𝑆 ∈ V)
22 issstrmgm.p . . . . . . . 8 + = (+g𝐺)
233, 22ressplusg 17230 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2421, 23syl 17 . . . . . 6 ((𝐻𝑉𝑆𝐵) → + = (+g𝐻))
2524adantr 480 . . . . 5 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → + = (+g𝐻))
2625oveqdr 7397 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
276adantr 480 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
2818, 26, 273eltr4d 2843 . . 3 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2928ralrimivva 3178 . 2 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
305adantl 481 . . . . 5 ((𝐻𝑉𝑆𝐵) → 𝑆 = (Base‘𝐻))
3124oveqd 7386 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
3231, 30eleq12d 2822 . . . . . 6 ((𝐻𝑉𝑆𝐵) → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3330, 32raleqbidv 3316 . . . . 5 ((𝐻𝑉𝑆𝐵) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3430, 33raleqbidv 3316 . . . 4 ((𝐻𝑉𝑆𝐵) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3534biimpa 476 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3615, 16ismgm 18550 . . . 4 (𝐻𝑉 → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3736ad2antrr 726 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3835, 37mpbird 257 . 2 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm)
3929, 38impbida 800 1 ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  +gcplusg 17196  Mgmcmgm 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mgm 18549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator