MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issstrmgm Structured version   Visualization version   GIF version

Theorem issstrmgm 18572
Description: Characterize a substructure as submagma by closure properties. (Contributed by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
issstrmgm.b 𝐵 = (Base‘𝐺)
issstrmgm.p + = (+g𝐺)
issstrmgm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
issstrmgm ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦   𝑥,𝑆,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   + (𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem issstrmgm
StepHypRef Expression
1 simplr 768 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mgm)
2 simplr 768 . . . . . . . . . 10 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆𝐵)
3 issstrmgm.h . . . . . . . . . . 11 𝐻 = (𝐺s 𝑆)
4 issstrmgm.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
53, 4ressbas2 17182 . . . . . . . . . 10 (𝑆𝐵𝑆 = (Base‘𝐻))
62, 5syl 17 . . . . . . . . 9 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 = (Base‘𝐻))
76eleq2d 2820 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
87biimpcd 248 . . . . . . 7 (𝑥𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
98adantr 482 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑥 ∈ (Base‘𝐻)))
109impcom 409 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
116eleq2d 2820 . . . . . . . 8 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (𝑦𝑆𝑦 ∈ (Base‘𝐻)))
1211biimpcd 248 . . . . . . 7 (𝑦𝑆 → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1312adantl 483 . . . . . 6 ((𝑥𝑆𝑦𝑆) → (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑦 ∈ (Base‘𝐻)))
1413impcom 409 . . . . 5 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
15 eqid 2733 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
16 eqid 2733 . . . . . 6 (+g𝐻) = (+g𝐻)
1715, 16mgmcl 18564 . . . . 5 ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
181, 10, 14, 17syl3anc 1372 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
194fvexi 6906 . . . . . . . . 9 𝐵 ∈ V
2019ssex 5322 . . . . . . . 8 (𝑆𝐵𝑆 ∈ V)
2120adantl 483 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → 𝑆 ∈ V)
22 issstrmgm.p . . . . . . . 8 + = (+g𝐺)
233, 22ressplusg 17235 . . . . . . 7 (𝑆 ∈ V → + = (+g𝐻))
2421, 23syl 17 . . . . . 6 ((𝐻𝑉𝑆𝐵) → + = (+g𝐻))
2524adantr 482 . . . . 5 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → + = (+g𝐻))
2625oveqdr 7437 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
276adantr 482 . . . 4 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
2818, 26, 273eltr4d 2849 . . 3 ((((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2928ralrimivva 3201 . 2 (((𝐻𝑉𝑆𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
305adantl 483 . . . . 5 ((𝐻𝑉𝑆𝐵) → 𝑆 = (Base‘𝐻))
3124oveqd 7426 . . . . . . 7 ((𝐻𝑉𝑆𝐵) → (𝑥 + 𝑦) = (𝑥(+g𝐻)𝑦))
3231, 30eleq12d 2828 . . . . . 6 ((𝐻𝑉𝑆𝐵) → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3330, 32raleqbidv 3343 . . . . 5 ((𝐻𝑉𝑆𝐵) → (∀𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3430, 33raleqbidv 3343 . . . 4 ((𝐻𝑉𝑆𝐵) → (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3534biimpa 478 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3615, 16ismgm 18562 . . . 4 (𝐻𝑉 → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3736ad2antrr 725 . . 3 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝐻 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻)))
3835, 37mpbird 257 . 2 (((𝐻𝑉𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm)
3929, 38impbida 800 1 ((𝐻𝑉𝑆𝐵) → (𝐻 ∈ Mgm ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  wss 3949  cfv 6544  (class class class)co 7409  Basecbs 17144  s cress 17173  +gcplusg 17197  Mgmcmgm 18559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mgm 18561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator