MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmpropd Structured version   Visualization version   GIF version

Theorem mgmpropd 18677
Description: If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmpropd.k (𝜑𝐵 = (Base‘𝐾))
mgmpropd.l (𝜑𝐵 = (Base‘𝐿))
mgmpropd.b (𝜑𝐵 ≠ ∅)
mgmpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
mgmpropd (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem mgmpropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝜑)
2 mgmpropd.k . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝐾))
32eqcomd 2741 . . . . . . . . . 10 (𝜑 → (Base‘𝐾) = 𝐵)
43eleq2d 2825 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↔ 𝑥𝐵))
54biimpcd 249 . . . . . . . 8 (𝑥 ∈ (Base‘𝐾) → (𝜑𝑥𝐵))
65adantr 480 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝜑𝑥𝐵))
76impcom 407 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥𝐵)
83eleq2d 2825 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (Base‘𝐾) ↔ 𝑦𝐵))
98biimpd 229 . . . . . . . 8 (𝜑 → (𝑦 ∈ (Base‘𝐾) → 𝑦𝐵))
109adantld 490 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵))
1110imp 406 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦𝐵)
12 mgmpropd.p . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
131, 7, 11, 12syl12anc 837 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1413eleq1d 2824 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾)))
15142ralbidva 3217 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾)))
16 mgmpropd.l . . . . 5 (𝜑𝐵 = (Base‘𝐿))
172, 16eqtr3d 2777 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
1817eleq2d 2825 . . . . 5 (𝜑 → ((𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
1917, 18raleqbidv 3344 . . . 4 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
2017, 19raleqbidv 3344 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
2115, 20bitrd 279 . 2 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
22 mgmpropd.b . . 3 (𝜑𝐵 ≠ ∅)
23 n0 4359 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑎 𝑎𝐵)
242eleq2d 2825 . . . . . 6 (𝜑 → (𝑎𝐵𝑎 ∈ (Base‘𝐾)))
25 eqid 2735 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
26 eqid 2735 . . . . . . 7 (+g𝐾) = (+g𝐾)
2725, 26ismgmn0 18668 . . . . . 6 (𝑎 ∈ (Base‘𝐾) → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾)))
2824, 27biimtrdi 253 . . . . 5 (𝜑 → (𝑎𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
2928exlimdv 1931 . . . 4 (𝜑 → (∃𝑎 𝑎𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
3023, 29biimtrid 242 . . 3 (𝜑 → (𝐵 ≠ ∅ → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
3122, 30mpd 15 . 2 (𝜑 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾)))
3216eleq2d 2825 . . . . . 6 (𝜑 → (𝑎𝐵𝑎 ∈ (Base‘𝐿)))
33 eqid 2735 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
34 eqid 2735 . . . . . . 7 (+g𝐿) = (+g𝐿)
3533, 34ismgmn0 18668 . . . . . 6 (𝑎 ∈ (Base‘𝐿) → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
3632, 35biimtrdi 253 . . . . 5 (𝜑 → (𝑎𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3736exlimdv 1931 . . . 4 (𝜑 → (∃𝑎 𝑎𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3823, 37biimtrid 242 . . 3 (𝜑 → (𝐵 ≠ ∅ → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3922, 38mpd 15 . 2 (𝜑 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
4021, 31, 393bitr4d 311 1 (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  c0 4339  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Mgmcmgm 18664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571  df-ov 7434  df-mgm 18666
This theorem is referenced by:  mgmhmpropd  18724
  Copyright terms: Public domain W3C validator