Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝜑) |
2 | | mgmpropd.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
3 | 2 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝐾) = 𝐵) |
4 | 3 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↔ 𝑥 ∈ 𝐵)) |
5 | 4 | biimpcd 248 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝐾) → (𝜑 → 𝑥 ∈ 𝐵)) |
6 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝜑 → 𝑥 ∈ 𝐵)) |
7 | 6 | impcom 408 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 ∈ 𝐵) |
8 | 3 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (Base‘𝐾) ↔ 𝑦 ∈ 𝐵)) |
9 | 8 | biimpd 228 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (Base‘𝐾) → 𝑦 ∈ 𝐵)) |
10 | 9 | adantld 491 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵)) |
11 | 10 | imp 407 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦 ∈ 𝐵) |
12 | | mgmpropd.p |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
13 | 1, 7, 11, 12 | syl12anc 834 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
14 | 13 | eleq1d 2823 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾))) |
15 | 14 | 2ralbidva 3128 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾))) |
16 | | mgmpropd.l |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
17 | 2, 16 | eqtr3d 2780 |
. . . 4
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
18 | 17 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → ((𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
19 | 17, 18 | raleqbidv 3336 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
20 | 17, 19 | raleqbidv 3336 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
21 | 15, 20 | bitrd 278 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
22 | | mgmpropd.b |
. . 3
⊢ (𝜑 → 𝐵 ≠ ∅) |
23 | | n0 4280 |
. . . 4
⊢ (𝐵 ≠ ∅ ↔
∃𝑎 𝑎 ∈ 𝐵) |
24 | 2 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ (Base‘𝐾))) |
25 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
26 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝐾) = (+g‘𝐾) |
27 | 25, 26 | ismgmn0 18328 |
. . . . . 6
⊢ (𝑎 ∈ (Base‘𝐾) → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾))) |
28 | 24, 27 | syl6bi 252 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)))) |
29 | 28 | exlimdv 1936 |
. . . 4
⊢ (𝜑 → (∃𝑎 𝑎 ∈ 𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)))) |
30 | 23, 29 | syl5bi 241 |
. . 3
⊢ (𝜑 → (𝐵 ≠ ∅ → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)))) |
31 | 22, 30 | mpd 15 |
. 2
⊢ (𝜑 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾))) |
32 | 16 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ (Base‘𝐿))) |
33 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐿) =
(Base‘𝐿) |
34 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝐿) = (+g‘𝐿) |
35 | 33, 34 | ismgmn0 18328 |
. . . . . 6
⊢ (𝑎 ∈ (Base‘𝐿) → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
36 | 32, 35 | syl6bi 252 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)))) |
37 | 36 | exlimdv 1936 |
. . . 4
⊢ (𝜑 → (∃𝑎 𝑎 ∈ 𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)))) |
38 | 23, 37 | syl5bi 241 |
. . 3
⊢ (𝜑 → (𝐵 ≠ ∅ → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)))) |
39 | 22, 38 | mpd 15 |
. 2
⊢ (𝜑 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
40 | 21, 31, 39 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm)) |