| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝜑) |
| 2 | | mgmpropd.k |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 3 | 2 | eqcomd 2742 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝐾) = 𝐵) |
| 4 | 3 | eleq2d 2821 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (Base‘𝐾) ↔ 𝑥 ∈ 𝐵)) |
| 5 | 4 | biimpcd 249 |
. . . . . . . 8
⊢ (𝑥 ∈ (Base‘𝐾) → (𝜑 → 𝑥 ∈ 𝐵)) |
| 6 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝜑 → 𝑥 ∈ 𝐵)) |
| 7 | 6 | impcom 407 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥 ∈ 𝐵) |
| 8 | 3 | eleq2d 2821 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ (Base‘𝐾) ↔ 𝑦 ∈ 𝐵)) |
| 9 | 8 | biimpd 229 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ (Base‘𝐾) → 𝑦 ∈ 𝐵)) |
| 10 | 9 | adantld 490 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦 ∈ 𝐵)) |
| 11 | 10 | imp 406 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦 ∈ 𝐵) |
| 12 | | mgmpropd.p |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 13 | 1, 7, 11, 12 | syl12anc 836 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 14 | 13 | eleq1d 2820 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾))) |
| 15 | 14 | 2ralbidva 3207 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾))) |
| 16 | | mgmpropd.l |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 17 | 2, 16 | eqtr3d 2773 |
. . . 4
⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) |
| 18 | 17 | eleq2d 2821 |
. . . . 5
⊢ (𝜑 → ((𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
| 19 | 17, 18 | raleqbidv 3329 |
. . . 4
⊢ (𝜑 → (∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
| 20 | 17, 19 | raleqbidv 3329 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
| 21 | 15, 20 | bitrd 279 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
| 22 | | mgmpropd.b |
. . 3
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 23 | | n0 4333 |
. . . 4
⊢ (𝐵 ≠ ∅ ↔
∃𝑎 𝑎 ∈ 𝐵) |
| 24 | 2 | eleq2d 2821 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ (Base‘𝐾))) |
| 25 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 26 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝐾) = (+g‘𝐾) |
| 27 | 25, 26 | ismgmn0 18625 |
. . . . . 6
⊢ (𝑎 ∈ (Base‘𝐾) → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾))) |
| 28 | 24, 27 | biimtrdi 253 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)))) |
| 29 | 28 | exlimdv 1933 |
. . . 4
⊢ (𝜑 → (∃𝑎 𝑎 ∈ 𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)))) |
| 30 | 23, 29 | biimtrid 242 |
. . 3
⊢ (𝜑 → (𝐵 ≠ ∅ → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾)))) |
| 31 | 22, 30 | mpd 15 |
. 2
⊢ (𝜑 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g‘𝐾)𝑦) ∈ (Base‘𝐾))) |
| 32 | 16 | eleq2d 2821 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ (Base‘𝐿))) |
| 33 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 34 | | eqid 2736 |
. . . . . . 7
⊢
(+g‘𝐿) = (+g‘𝐿) |
| 35 | 33, 34 | ismgmn0 18625 |
. . . . . 6
⊢ (𝑎 ∈ (Base‘𝐿) → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
| 36 | 32, 35 | biimtrdi 253 |
. . . . 5
⊢ (𝜑 → (𝑎 ∈ 𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)))) |
| 37 | 36 | exlimdv 1933 |
. . . 4
⊢ (𝜑 → (∃𝑎 𝑎 ∈ 𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)))) |
| 38 | 23, 37 | biimtrid 242 |
. . 3
⊢ (𝜑 → (𝐵 ≠ ∅ → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿)))) |
| 39 | 22, 38 | mpd 15 |
. 2
⊢ (𝜑 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g‘𝐿)𝑦) ∈ (Base‘𝐿))) |
| 40 | 21, 31, 39 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm)) |