Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmpropd Structured version   Visualization version   GIF version

Theorem mgmpropd 42303
Description: If two structures have the same (nonempty) base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a magma iff the other one is. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
mgmpropd.k (𝜑𝐵 = (Base‘𝐾))
mgmpropd.l (𝜑𝐵 = (Base‘𝐿))
mgmpropd.b (𝜑𝐵 ≠ ∅)
mgmpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
mgmpropd (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem mgmpropd
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpl 468 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝜑)
2 mgmpropd.k . . . . . . . . . . 11 (𝜑𝐵 = (Base‘𝐾))
32eqcomd 2777 . . . . . . . . . 10 (𝜑 → (Base‘𝐾) = 𝐵)
43eleq2d 2836 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (Base‘𝐾) ↔ 𝑥𝐵))
54biimpcd 239 . . . . . . . 8 (𝑥 ∈ (Base‘𝐾) → (𝜑𝑥𝐵))
65adantr 466 . . . . . . 7 ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝜑𝑥𝐵))
76impcom 394 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑥𝐵)
83eleq2d 2836 . . . . . . . . 9 (𝜑 → (𝑦 ∈ (Base‘𝐾) ↔ 𝑦𝐵))
98biimpd 219 . . . . . . . 8 (𝜑 → (𝑦 ∈ (Base‘𝐾) → 𝑦𝐵))
109adantld 478 . . . . . . 7 (𝜑 → ((𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → 𝑦𝐵))
1110imp 393 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → 𝑦𝐵)
12 mgmpropd.p . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
131, 7, 11, 12syl12anc 1474 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1413eleq1d 2835 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → ((𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾)))
15142ralbidva 3137 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾)))
16 mgmpropd.l . . . . 5 (𝜑𝐵 = (Base‘𝐿))
172, 16eqtr3d 2807 . . . 4 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
1817eleq2d 2836 . . . . 5 (𝜑 → ((𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
1917, 18raleqbidv 3301 . . . 4 (𝜑 → (∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
2017, 19raleqbidv 3301 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
2115, 20bitrd 268 . 2 (𝜑 → (∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾) ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
22 mgmpropd.b . . 3 (𝜑𝐵 ≠ ∅)
23 n0 4078 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑎 𝑎𝐵)
242eleq2d 2836 . . . . . 6 (𝜑 → (𝑎𝐵𝑎 ∈ (Base‘𝐾)))
25 eqid 2771 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
26 eqid 2771 . . . . . . 7 (+g𝐾) = (+g𝐾)
2725, 26ismgmn0 17452 . . . . . 6 (𝑎 ∈ (Base‘𝐾) → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾)))
2824, 27syl6bi 243 . . . . 5 (𝜑 → (𝑎𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
2928exlimdv 2013 . . . 4 (𝜑 → (∃𝑎 𝑎𝐵 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
3023, 29syl5bi 232 . . 3 (𝜑 → (𝐵 ≠ ∅ → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))))
3122, 30mpd 15 . 2 (𝜑 → (𝐾 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾)))
3216eleq2d 2836 . . . . . 6 (𝜑 → (𝑎𝐵𝑎 ∈ (Base‘𝐿)))
33 eqid 2771 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
34 eqid 2771 . . . . . . 7 (+g𝐿) = (+g𝐿)
3533, 34ismgmn0 17452 . . . . . 6 (𝑎 ∈ (Base‘𝐿) → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
3632, 35syl6bi 243 . . . . 5 (𝜑 → (𝑎𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3736exlimdv 2013 . . . 4 (𝜑 → (∃𝑎 𝑎𝐵 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3823, 37syl5bi 232 . . 3 (𝜑 → (𝐵 ≠ ∅ → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))))
3922, 38mpd 15 . 2 (𝜑 → (𝐿 ∈ Mgm ↔ ∀𝑥 ∈ (Base‘𝐿)∀𝑦 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿)))
4021, 31, 393bitr4d 300 1 (𝜑 → (𝐾 ∈ Mgm ↔ 𝐿 ∈ Mgm))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wex 1852  wcel 2145  wne 2943  wral 3061  c0 4063  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  Mgmcmgm 17448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-nul 4923  ax-pow 4974
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-dm 5259  df-iota 5994  df-fv 6039  df-ov 6796  df-mgm 17450
This theorem is referenced by:  mgmhmpropd  42313
  Copyright terms: Public domain W3C validator