![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restperf | Structured version Visualization version GIF version |
Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
restcls.1 | ⊢ 𝑋 = ∪ 𝐽 |
restcls.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
Ref | Expression |
---|---|
restperf | ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
2 | restcls.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | toptopon 22939 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
4 | resttopon 23185 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) | |
5 | 3, 4 | sylanb 581 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
6 | 1, 5 | eqeltrid 2843 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
7 | topontop 22935 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ Top) |
9 | eqid 2735 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
10 | 9 | isperf 23175 | . . . 4 ⊢ (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
11 | 10 | baib 535 | . . 3 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
12 | 8, 11 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
13 | sseqin2 4231 | . . 3 ⊢ (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌) | |
14 | ssid 4018 | . . . . . 6 ⊢ 𝑌 ⊆ 𝑌 | |
15 | 2, 1 | restlp 23207 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑌) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌)) |
16 | 14, 15 | mp3an3 1449 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌)) |
17 | toponuni 22936 | . . . . . . 7 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | |
18 | 6, 17 | syl 17 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝑌 = ∪ 𝐾) |
19 | 18 | fveq2d 6911 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((limPt‘𝐾)‘𝑌) = ((limPt‘𝐾)‘∪ 𝐾)) |
20 | 16, 19 | eqtr3d 2777 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = ((limPt‘𝐾)‘∪ 𝐾)) |
21 | 20, 18 | eqeq12d 2751 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌 ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
22 | 13, 21 | bitrid 283 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
23 | 12, 22 | bitr4d 282 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 ∪ cuni 4912 ‘cfv 6563 (class class class)co 7431 ↾t crest 17467 Topctop 22915 TopOnctopon 22932 limPtclp 23158 Perfcperf 23159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-en 8985 df-fin 8988 df-fi 9449 df-rest 17469 df-topgen 17490 df-top 22916 df-topon 22933 df-bases 22969 df-cld 23043 df-cls 23045 df-lp 23160 df-perf 23161 |
This theorem is referenced by: perfcls 23389 reperflem 24854 perfdvf 25953 |
Copyright terms: Public domain | W3C validator |