| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restperf | Structured version Visualization version GIF version | ||
| Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| restcls.1 | ⊢ 𝑋 = ∪ 𝐽 |
| restcls.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
| Ref | Expression |
|---|---|
| restperf | ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
| 2 | restcls.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | toptopon 22804 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | resttopon 23048 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) | |
| 5 | 3, 4 | sylanb 581 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 6 | 1, 5 | eqeltrid 2832 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 7 | topontop 22800 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ Top) |
| 9 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 10 | 9 | isperf 23038 | . . . 4 ⊢ (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 11 | 10 | baib 535 | . . 3 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 12 | 8, 11 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 13 | sseqin2 4186 | . . 3 ⊢ (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌) | |
| 14 | ssid 3969 | . . . . . 6 ⊢ 𝑌 ⊆ 𝑌 | |
| 15 | 2, 1 | restlp 23070 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑌) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌)) |
| 16 | 14, 15 | mp3an3 1452 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌)) |
| 17 | toponuni 22801 | . . . . . . 7 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | |
| 18 | 6, 17 | syl 17 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝑌 = ∪ 𝐾) |
| 19 | 18 | fveq2d 6862 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((limPt‘𝐾)‘𝑌) = ((limPt‘𝐾)‘∪ 𝐾)) |
| 20 | 16, 19 | eqtr3d 2766 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = ((limPt‘𝐾)‘∪ 𝐾)) |
| 21 | 20, 18 | eqeq12d 2745 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌 ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 22 | 13, 21 | bitrid 283 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 23 | 12, 22 | bitr4d 282 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 (class class class)co 7387 ↾t crest 17383 Topctop 22780 TopOnctopon 22797 limPtclp 23021 Perfcperf 23022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-en 8919 df-fin 8922 df-fi 9362 df-rest 17385 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cld 22906 df-cls 22908 df-lp 23023 df-perf 23024 |
| This theorem is referenced by: perfcls 23252 reperflem 24707 perfdvf 25804 |
| Copyright terms: Public domain | W3C validator |