![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > restperf | Structured version Visualization version GIF version |
Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
restcls.1 | β’ π = βͺ π½ |
restcls.2 | β’ πΎ = (π½ βΎt π) |
Ref | Expression |
---|---|
restperf | β’ ((π½ β Top β§ π β π) β (πΎ β Perf β π β ((limPtβπ½)βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls.2 | . . . . 5 β’ πΎ = (π½ βΎt π) | |
2 | restcls.1 | . . . . . . 7 β’ π = βͺ π½ | |
3 | 2 | toptopon 22847 | . . . . . 6 β’ (π½ β Top β π½ β (TopOnβπ)) |
4 | resttopon 23093 | . . . . . 6 β’ ((π½ β (TopOnβπ) β§ π β π) β (π½ βΎt π) β (TopOnβπ)) | |
5 | 3, 4 | sylanb 579 | . . . . 5 β’ ((π½ β Top β§ π β π) β (π½ βΎt π) β (TopOnβπ)) |
6 | 1, 5 | eqeltrid 2833 | . . . 4 β’ ((π½ β Top β§ π β π) β πΎ β (TopOnβπ)) |
7 | topontop 22843 | . . . 4 β’ (πΎ β (TopOnβπ) β πΎ β Top) | |
8 | 6, 7 | syl 17 | . . 3 β’ ((π½ β Top β§ π β π) β πΎ β Top) |
9 | eqid 2728 | . . . . 5 β’ βͺ πΎ = βͺ πΎ | |
10 | 9 | isperf 23083 | . . . 4 β’ (πΎ β Perf β (πΎ β Top β§ ((limPtβπΎ)ββͺ πΎ) = βͺ πΎ)) |
11 | 10 | baib 534 | . . 3 β’ (πΎ β Top β (πΎ β Perf β ((limPtβπΎ)ββͺ πΎ) = βͺ πΎ)) |
12 | 8, 11 | syl 17 | . 2 β’ ((π½ β Top β§ π β π) β (πΎ β Perf β ((limPtβπΎ)ββͺ πΎ) = βͺ πΎ)) |
13 | sseqin2 4217 | . . 3 β’ (π β ((limPtβπ½)βπ) β (((limPtβπ½)βπ) β© π) = π) | |
14 | ssid 4004 | . . . . . 6 β’ π β π | |
15 | 2, 1 | restlp 23115 | . . . . . 6 β’ ((π½ β Top β§ π β π β§ π β π) β ((limPtβπΎ)βπ) = (((limPtβπ½)βπ) β© π)) |
16 | 14, 15 | mp3an3 1446 | . . . . 5 β’ ((π½ β Top β§ π β π) β ((limPtβπΎ)βπ) = (((limPtβπ½)βπ) β© π)) |
17 | toponuni 22844 | . . . . . . 7 β’ (πΎ β (TopOnβπ) β π = βͺ πΎ) | |
18 | 6, 17 | syl 17 | . . . . . 6 β’ ((π½ β Top β§ π β π) β π = βͺ πΎ) |
19 | 18 | fveq2d 6906 | . . . . 5 β’ ((π½ β Top β§ π β π) β ((limPtβπΎ)βπ) = ((limPtβπΎ)ββͺ πΎ)) |
20 | 16, 19 | eqtr3d 2770 | . . . 4 β’ ((π½ β Top β§ π β π) β (((limPtβπ½)βπ) β© π) = ((limPtβπΎ)ββͺ πΎ)) |
21 | 20, 18 | eqeq12d 2744 | . . 3 β’ ((π½ β Top β§ π β π) β ((((limPtβπ½)βπ) β© π) = π β ((limPtβπΎ)ββͺ πΎ) = βͺ πΎ)) |
22 | 13, 21 | bitrid 282 | . 2 β’ ((π½ β Top β§ π β π) β (π β ((limPtβπ½)βπ) β ((limPtβπΎ)ββͺ πΎ) = βͺ πΎ)) |
23 | 12, 22 | bitr4d 281 | 1 β’ ((π½ β Top β§ π β π) β (πΎ β Perf β π β ((limPtβπ½)βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 β© cin 3948 β wss 3949 βͺ cuni 4912 βcfv 6553 (class class class)co 7426 βΎt crest 17411 Topctop 22823 TopOnctopon 22840 limPtclp 23066 Perfcperf 23067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-en 8973 df-fin 8976 df-fi 9444 df-rest 17413 df-topgen 17434 df-top 22824 df-topon 22841 df-bases 22877 df-cld 22951 df-cls 22953 df-lp 23068 df-perf 23069 |
This theorem is referenced by: perfcls 23297 reperflem 24762 perfdvf 25860 |
Copyright terms: Public domain | W3C validator |