MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restperf Structured version   Visualization version   GIF version

Theorem restperf 22316
Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restperf ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))

Proof of Theorem restperf
StepHypRef Expression
1 restcls.2 . . . . 5 𝐾 = (𝐽t 𝑌)
2 restcls.1 . . . . . . 7 𝑋 = 𝐽
32toptopon 22047 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4 resttopon 22293 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
53, 4sylanb 580 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
61, 5eqeltrid 2844 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ (TopOn‘𝑌))
7 topontop 22043 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
86, 7syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ Top)
9 eqid 2739 . . . . 5 𝐾 = 𝐾
109isperf 22283 . . . 4 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
1110baib 535 . . 3 (𝐾 ∈ Top → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
128, 11syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
13 sseqin2 4154 . . 3 (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌)
14 ssid 3947 . . . . . 6 𝑌𝑌
152, 1restlp 22315 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑌𝑌) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌))
1614, 15mp3an3 1448 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌))
17 toponuni 22044 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
186, 17syl 17 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = 𝐾)
1918fveq2d 6772 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((limPt‘𝐾)‘𝑌) = ((limPt‘𝐾)‘ 𝐾))
2016, 19eqtr3d 2781 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = ((limPt‘𝐾)‘ 𝐾))
2120, 18eqeq12d 2755 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌 ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
2213, 21syl5bb 282 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
2312, 22bitr4d 281 1 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  cin 3890  wss 3891   cuni 4844  cfv 6430  (class class class)co 7268  t crest 17112  Topctop 22023  TopOnctopon 22040  limPtclp 22266  Perfcperf 22267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-en 8708  df-fin 8711  df-fi 9131  df-rest 17114  df-topgen 17135  df-top 22024  df-topon 22041  df-bases 22077  df-cld 22151  df-cls 22153  df-lp 22268  df-perf 22269
This theorem is referenced by:  perfcls  22497  reperflem  23962  perfdvf  25048
  Copyright terms: Public domain W3C validator