MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restperf Structured version   Visualization version   GIF version

Theorem restperf 21789
Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restperf ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))

Proof of Theorem restperf
StepHypRef Expression
1 restcls.2 . . . . 5 𝐾 = (𝐽t 𝑌)
2 restcls.1 . . . . . . 7 𝑋 = 𝐽
32toptopon 21522 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4 resttopon 21766 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
53, 4sylanb 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
61, 5eqeltrid 2894 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ (TopOn‘𝑌))
7 topontop 21518 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
86, 7syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ Top)
9 eqid 2798 . . . . 5 𝐾 = 𝐾
109isperf 21756 . . . 4 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
1110baib 539 . . 3 (𝐾 ∈ Top → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
128, 11syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
13 sseqin2 4142 . . 3 (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌)
14 ssid 3937 . . . . . 6 𝑌𝑌
152, 1restlp 21788 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑌𝑌) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌))
1614, 15mp3an3 1447 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌))
17 toponuni 21519 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
186, 17syl 17 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = 𝐾)
1918fveq2d 6649 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((limPt‘𝐾)‘𝑌) = ((limPt‘𝐾)‘ 𝐾))
2016, 19eqtr3d 2835 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = ((limPt‘𝐾)‘ 𝐾))
2120, 18eqeq12d 2814 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌 ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
2213, 21syl5bb 286 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
2312, 22bitr4d 285 1 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cin 3880  wss 3881   cuni 4800  cfv 6324  (class class class)co 7135  t crest 16686  Topctop 21498  TopOnctopon 21515  limPtclp 21739  Perfcperf 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-fi 8859  df-rest 16688  df-topgen 16709  df-top 21499  df-topon 21516  df-bases 21551  df-cld 21624  df-cls 21626  df-lp 21741  df-perf 21742
This theorem is referenced by:  perfcls  21970  reperflem  23423  perfdvf  24506
  Copyright terms: Public domain W3C validator