MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restperf Structured version   Visualization version   GIF version

Theorem restperf 23071
Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restperf ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))

Proof of Theorem restperf
StepHypRef Expression
1 restcls.2 . . . . 5 𝐾 = (𝐽t 𝑌)
2 restcls.1 . . . . . . 7 𝑋 = 𝐽
32toptopon 22804 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4 resttopon 23048 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
53, 4sylanb 581 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
61, 5eqeltrid 2832 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ (TopOn‘𝑌))
7 topontop 22800 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
86, 7syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ Top)
9 eqid 2729 . . . . 5 𝐾 = 𝐾
109isperf 23038 . . . 4 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
1110baib 535 . . 3 (𝐾 ∈ Top → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
128, 11syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
13 sseqin2 4186 . . 3 (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌)
14 ssid 3969 . . . . . 6 𝑌𝑌
152, 1restlp 23070 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑌𝑌) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌))
1614, 15mp3an3 1452 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌))
17 toponuni 22801 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
186, 17syl 17 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = 𝐾)
1918fveq2d 6862 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((limPt‘𝐾)‘𝑌) = ((limPt‘𝐾)‘ 𝐾))
2016, 19eqtr3d 2766 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = ((limPt‘𝐾)‘ 𝐾))
2120, 18eqeq12d 2745 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌 ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
2213, 21bitrid 283 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
2312, 22bitr4d 282 1 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913  wss 3914   cuni 4871  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  TopOnctopon 22797  limPtclp 23021  Perfcperf 23022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-cls 22908  df-lp 23023  df-perf 23024
This theorem is referenced by:  perfcls  23252  reperflem  24707  perfdvf  25804
  Copyright terms: Public domain W3C validator