| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > restperf | Structured version Visualization version GIF version | ||
| Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| restcls.1 | ⊢ 𝑋 = ∪ 𝐽 |
| restcls.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
| Ref | Expression |
|---|---|
| restperf | ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
| 2 | restcls.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | toptopon 22825 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 4 | resttopon 23069 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) | |
| 5 | 3, 4 | sylanb 581 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
| 6 | 1, 5 | eqeltrid 2833 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 7 | topontop 22821 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ Top) |
| 9 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 10 | 9 | isperf 23059 | . . . 4 ⊢ (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 11 | 10 | baib 535 | . . 3 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 12 | 8, 11 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 13 | sseqin2 4171 | . . 3 ⊢ (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌) | |
| 14 | ssid 3955 | . . . . . 6 ⊢ 𝑌 ⊆ 𝑌 | |
| 15 | 2, 1 | restlp 23091 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑌) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌)) |
| 16 | 14, 15 | mp3an3 1452 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌)) |
| 17 | toponuni 22822 | . . . . . . 7 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | |
| 18 | 6, 17 | syl 17 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝑌 = ∪ 𝐾) |
| 19 | 18 | fveq2d 6821 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((limPt‘𝐾)‘𝑌) = ((limPt‘𝐾)‘∪ 𝐾)) |
| 20 | 16, 19 | eqtr3d 2767 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = ((limPt‘𝐾)‘∪ 𝐾)) |
| 21 | 20, 18 | eqeq12d 2746 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌 ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 22 | 13, 21 | bitrid 283 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
| 23 | 12, 22 | bitr4d 282 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∩ cin 3899 ⊆ wss 3900 ∪ cuni 4857 ‘cfv 6477 (class class class)co 7341 ↾t crest 17316 Topctop 22801 TopOnctopon 22818 limPtclp 23042 Perfcperf 23043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-en 8865 df-fin 8868 df-fi 9290 df-rest 17318 df-topgen 17339 df-top 22802 df-topon 22819 df-bases 22854 df-cld 22927 df-cls 22929 df-lp 23044 df-perf 23045 |
| This theorem is referenced by: perfcls 23273 reperflem 24727 perfdvf 25824 |
| Copyright terms: Public domain | W3C validator |