Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > restperf | Structured version Visualization version GIF version |
Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
restcls.1 | ⊢ 𝑋 = ∪ 𝐽 |
restcls.2 | ⊢ 𝐾 = (𝐽 ↾t 𝑌) |
Ref | Expression |
---|---|
restperf | ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls.2 | . . . . 5 ⊢ 𝐾 = (𝐽 ↾t 𝑌) | |
2 | restcls.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | toptopon 22047 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
4 | resttopon 22293 | . . . . . 6 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) | |
5 | 3, 4 | sylanb 580 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) ∈ (TopOn‘𝑌)) |
6 | 1, 5 | eqeltrid 2844 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
7 | topontop 22043 | . . . 4 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝐾 ∈ Top) |
9 | eqid 2739 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
10 | 9 | isperf 22283 | . . . 4 ⊢ (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
11 | 10 | baib 535 | . . 3 ⊢ (𝐾 ∈ Top → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
12 | 8, 11 | syl 17 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
13 | sseqin2 4154 | . . 3 ⊢ (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌) | |
14 | ssid 3947 | . . . . . 6 ⊢ 𝑌 ⊆ 𝑌 | |
15 | 2, 1 | restlp 22315 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋 ∧ 𝑌 ⊆ 𝑌) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌)) |
16 | 14, 15 | mp3an3 1448 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌)) |
17 | toponuni 22044 | . . . . . . 7 ⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | |
18 | 6, 17 | syl 17 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → 𝑌 = ∪ 𝐾) |
19 | 18 | fveq2d 6772 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((limPt‘𝐾)‘𝑌) = ((limPt‘𝐾)‘∪ 𝐾)) |
20 | 16, 19 | eqtr3d 2781 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = ((limPt‘𝐾)‘∪ 𝐾)) |
21 | 20, 18 | eqeq12d 2755 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → ((((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌 ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
22 | 13, 21 | syl5bb 282 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ ((limPt‘𝐾)‘∪ 𝐾) = ∪ 𝐾)) |
23 | 12, 22 | bitr4d 281 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ 𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ⊆ wss 3891 ∪ cuni 4844 ‘cfv 6430 (class class class)co 7268 ↾t crest 17112 Topctop 22023 TopOnctopon 22040 limPtclp 22266 Perfcperf 22267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-en 8708 df-fin 8711 df-fi 9131 df-rest 17114 df-topgen 17135 df-top 22024 df-topon 22041 df-bases 22077 df-cld 22151 df-cls 22153 df-lp 22268 df-perf 22269 |
This theorem is referenced by: perfcls 22497 reperflem 23962 perfdvf 25048 |
Copyright terms: Public domain | W3C validator |