MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restperf Structured version   Visualization version   GIF version

Theorem restperf 23127
Description: Perfection of a subspace. Note that the term "perfect set" is reserved for closed sets which are perfect in the subspace topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restperf ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))

Proof of Theorem restperf
StepHypRef Expression
1 restcls.2 . . . . 5 𝐾 = (𝐽t 𝑌)
2 restcls.1 . . . . . . 7 𝑋 = 𝐽
32toptopon 22860 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
4 resttopon 23104 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
53, 4sylanb 581 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
61, 5eqeltrid 2839 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ (TopOn‘𝑌))
7 topontop 22856 . . . 4 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
86, 7syl 17 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝐾 ∈ Top)
9 eqid 2736 . . . . 5 𝐾 = 𝐾
109isperf 23094 . . . 4 (𝐾 ∈ Perf ↔ (𝐾 ∈ Top ∧ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
1110baib 535 . . 3 (𝐾 ∈ Top → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
128, 11syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
13 sseqin2 4203 . . 3 (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌)
14 ssid 3986 . . . . . 6 𝑌𝑌
152, 1restlp 23126 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑌𝑌) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌))
1614, 15mp3an3 1452 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((limPt‘𝐾)‘𝑌) = (((limPt‘𝐽)‘𝑌) ∩ 𝑌))
17 toponuni 22857 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
186, 17syl 17 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = 𝐾)
1918fveq2d 6885 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((limPt‘𝐾)‘𝑌) = ((limPt‘𝐾)‘ 𝐾))
2016, 19eqtr3d 2773 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (((limPt‘𝐽)‘𝑌) ∩ 𝑌) = ((limPt‘𝐾)‘ 𝐾))
2120, 18eqeq12d 2752 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋) → ((((limPt‘𝐽)‘𝑌) ∩ 𝑌) = 𝑌 ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
2213, 21bitrid 283 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑌 ⊆ ((limPt‘𝐽)‘𝑌) ↔ ((limPt‘𝐾)‘ 𝐾) = 𝐾))
2312, 22bitr4d 282 1 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐾 ∈ Perf ↔ 𝑌 ⊆ ((limPt‘𝐽)‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3930  wss 3931   cuni 4888  cfv 6536  (class class class)co 7410  t crest 17439  Topctop 22836  TopOnctopon 22853  limPtclp 23077  Perfcperf 23078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-en 8965  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-cls 22964  df-lp 23079  df-perf 23080
This theorem is referenced by:  perfcls  23308  reperflem  24763  perfdvf  25861
  Copyright terms: Public domain W3C validator