MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf2 Structured version   Visualization version   GIF version

Theorem isperf2 23039
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))

Proof of Theorem isperf2
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21isperf 23038 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))
3 ssid 3969 . . . . 5 𝑋𝑋
41lpss 23029 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
53, 4mpan2 691 . . . 4 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
6 eqss 3962 . . . . 5 (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
76baib 535 . . . 4 (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 → (((limPt‘𝐽)‘𝑋) = 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
85, 7syl 17 . . 3 (𝐽 ∈ Top → (((limPt‘𝐽)‘𝑋) = 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
98pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
102, 9bitri 275 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914   cuni 4871  cfv 6511  Topctop 22780  limPtclp 23021  Perfcperf 23022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-top 22781  df-cld 22906  df-cls 22908  df-lp 23023  df-perf 23024
This theorem is referenced by:  isperf3  23040
  Copyright terms: Public domain W3C validator