![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isperf2 | Structured version Visualization version GIF version |
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf2 | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isperf 21443 | . 2 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
3 | ssid 3910 | . . . . 5 ⊢ 𝑋 ⊆ 𝑋 | |
4 | 1 | lpss 21434 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋) |
5 | 3, 4 | mpan2 687 | . . . 4 ⊢ (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋) |
6 | eqss 3904 | . . . . 5 ⊢ (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) | |
7 | 6 | baib 536 | . . . 4 ⊢ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 → (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
9 | 8 | pm5.32i 575 | . 2 ⊢ ((𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
10 | 2, 9 | bitri 276 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 ∪ cuni 4745 ‘cfv 6225 Topctop 21185 limPtclp 21426 Perfcperf 21427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-top 21186 df-cld 21311 df-cls 21313 df-lp 21428 df-perf 21429 |
This theorem is referenced by: isperf3 21445 |
Copyright terms: Public domain | W3C validator |