![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isperf2 | Structured version Visualization version GIF version |
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf2 | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isperf 23042 | . 2 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
3 | ssid 4000 | . . . . 5 ⊢ 𝑋 ⊆ 𝑋 | |
4 | 1 | lpss 23033 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋) |
5 | 3, 4 | mpan2 690 | . . . 4 ⊢ (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋) |
6 | eqss 3993 | . . . . 5 ⊢ (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) | |
7 | 6 | baib 535 | . . . 4 ⊢ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 → (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
9 | 8 | pm5.32i 574 | . 2 ⊢ ((𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
10 | 2, 9 | bitri 275 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 ∪ cuni 4903 ‘cfv 6542 Topctop 22782 limPtclp 23025 Perfcperf 23026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22783 df-cld 22910 df-cls 22912 df-lp 23027 df-perf 23028 |
This theorem is referenced by: isperf3 23044 |
Copyright terms: Public domain | W3C validator |