MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf2 Structured version   Visualization version   GIF version

Theorem isperf2 23065
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))

Proof of Theorem isperf2
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21isperf 23064 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))
3 ssid 3957 . . . . 5 𝑋𝑋
41lpss 23055 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
53, 4mpan2 691 . . . 4 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
6 eqss 3950 . . . . 5 (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
76baib 535 . . . 4 (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 → (((limPt‘𝐽)‘𝑋) = 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
85, 7syl 17 . . 3 (𝐽 ∈ Top → (((limPt‘𝐽)‘𝑋) = 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
98pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
102, 9bitri 275 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3902   cuni 4859  cfv 6481  Topctop 22806  limPtclp 23047  Perfcperf 23048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-top 22807  df-cld 22932  df-cls 22934  df-lp 23049  df-perf 23050
This theorem is referenced by:  isperf3  23066
  Copyright terms: Public domain W3C validator