MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperf2 Structured version   Visualization version   GIF version

Theorem isperf2 22211
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
isperf2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))

Proof of Theorem isperf2
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21isperf 22210 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋))
3 ssid 3939 . . . . 5 𝑋𝑋
41lpss 22201 . . . . 5 ((𝐽 ∈ Top ∧ 𝑋𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
53, 4mpan2 687 . . . 4 (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋)
6 eqss 3932 . . . . 5 (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
76baib 535 . . . 4 (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 → (((limPt‘𝐽)‘𝑋) = 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
85, 7syl 17 . . 3 (𝐽 ∈ Top → (((limPt‘𝐽)‘𝑋) = 𝑋𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
98pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
102, 9bitri 274 1 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883   cuni 4836  cfv 6418  Topctop 21950  limPtclp 22193  Perfcperf 22194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-cls 22080  df-lp 22195  df-perf 22196
This theorem is referenced by:  isperf3  22212
  Copyright terms: Public domain W3C validator