Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isperf2 | Structured version Visualization version GIF version |
Description: Definition of a perfect space. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isperf2 | ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | isperf 21844 | . 2 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋)) |
3 | ssid 3915 | . . . . 5 ⊢ 𝑋 ⊆ 𝑋 | |
4 | 1 | lpss 21835 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑋 ⊆ 𝑋) → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋) |
5 | 3, 4 | mpan2 691 | . . . 4 ⊢ (𝐽 ∈ Top → ((limPt‘𝐽)‘𝑋) ⊆ 𝑋) |
6 | eqss 3908 | . . . . 5 ⊢ (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) | |
7 | 6 | baib 540 | . . . 4 ⊢ (((limPt‘𝐽)‘𝑋) ⊆ 𝑋 → (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝐽 ∈ Top → (((limPt‘𝐽)‘𝑋) = 𝑋 ↔ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
9 | 8 | pm5.32i 579 | . 2 ⊢ ((𝐽 ∈ Top ∧ ((limPt‘𝐽)‘𝑋) = 𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
10 | 2, 9 | bitri 278 | 1 ⊢ (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ 𝑋 ⊆ ((limPt‘𝐽)‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ⊆ wss 3859 ∪ cuni 4799 ‘cfv 6336 Topctop 21586 limPtclp 21827 Perfcperf 21828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-top 21587 df-cld 21712 df-cls 21714 df-lp 21829 df-perf 21830 |
This theorem is referenced by: isperf3 21846 |
Copyright terms: Public domain | W3C validator |