![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cldlp | Structured version Visualization version GIF version |
Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
lpfval.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
cldlp | β’ ((π½ β Top β§ π β π) β (π β (Clsdβπ½) β ((limPtβπ½)βπ) β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . 3 β’ π = βͺ π½ | |
2 | 1 | iscld3 22790 | . 2 β’ ((π½ β Top β§ π β π) β (π β (Clsdβπ½) β ((clsβπ½)βπ) = π)) |
3 | 1 | clslp 22874 | . . . 4 β’ ((π½ β Top β§ π β π) β ((clsβπ½)βπ) = (π βͺ ((limPtβπ½)βπ))) |
4 | 3 | eqeq1d 2732 | . . 3 β’ ((π½ β Top β§ π β π) β (((clsβπ½)βπ) = π β (π βͺ ((limPtβπ½)βπ)) = π)) |
5 | ssequn2 4184 | . . 3 β’ (((limPtβπ½)βπ) β π β (π βͺ ((limPtβπ½)βπ)) = π) | |
6 | 4, 5 | bitr4di 288 | . 2 β’ ((π½ β Top β§ π β π) β (((clsβπ½)βπ) = π β ((limPtβπ½)βπ) β π)) |
7 | 2, 6 | bitrd 278 | 1 β’ ((π½ β Top β§ π β π) β (π β (Clsdβπ½) β ((limPtβπ½)βπ) β π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βͺ cun 3947 β wss 3949 βͺ cuni 4909 βcfv 6544 Topctop 22617 Clsdccld 22742 clsccl 22744 limPtclp 22860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-top 22618 df-cld 22745 df-ntr 22746 df-cls 22747 df-nei 22824 df-lp 22862 |
This theorem is referenced by: pibt2 36603 |
Copyright terms: Public domain | W3C validator |