MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldlp Structured version   Visualization version   GIF version

Theorem cldlp 23044
Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
cldlp ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆))

Proof of Theorem cldlp
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21iscld3 22958 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) = 𝑆))
31clslp 23042 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
43eqeq1d 2732 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) = 𝑆 ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = 𝑆))
5 ssequn2 4155 . . 3 (((limPt‘𝐽)‘𝑆) ⊆ 𝑆 ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = 𝑆)
64, 5bitr4di 289 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) = 𝑆 ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆))
72, 6bitrd 279 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cun 3915  wss 3917   cuni 4874  cfv 6514  Topctop 22787  Clsdccld 22910  clsccl 22912  limPtclp 23028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-top 22788  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030
This theorem is referenced by:  pibt2  37412
  Copyright terms: Public domain W3C validator