MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldlp Structured version   Visualization version   GIF version

Theorem cldlp 21758
Description: A subset of a topological space is closed iff it contains all its limit points. Corollary 6.7 of [Munkres] p. 97. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
cldlp ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆))

Proof of Theorem cldlp
StepHypRef Expression
1 lpfval.1 . . 3 𝑋 = 𝐽
21iscld3 21672 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) = 𝑆))
31clslp 21756 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
43eqeq1d 2826 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) = 𝑆 ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = 𝑆))
5 ssequn2 4145 . . 3 (((limPt‘𝐽)‘𝑆) ⊆ 𝑆 ↔ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) = 𝑆)
64, 5syl6bbr 292 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) = 𝑆 ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆))
72, 6bitrd 282 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((limPt‘𝐽)‘𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  cun 3917  wss 3919   cuni 4824  cfv 6343  Topctop 21501  Clsdccld 21624  clsccl 21626  limPtclp 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-top 21502  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744
This theorem is referenced by:  pibt2  34779
  Copyright terms: Public domain W3C validator