![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispisys | Structured version Visualization version GIF version |
Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020.) |
Ref | Expression |
---|---|
ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
Ref | Expression |
---|---|
ispisys | ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6896 | . . 3 ⊢ (𝑠 = 𝑆 → (fi‘𝑠) = (fi‘𝑆)) | |
2 | id 22 | . . 3 ⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) | |
3 | 1, 2 | sseq12d 4010 | . 2 ⊢ (𝑠 = 𝑆 → ((fi‘𝑠) ⊆ 𝑠 ↔ (fi‘𝑆) ⊆ 𝑆)) |
4 | ispisys.p | . 2 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
5 | 3, 4 | elrab2 3682 | 1 ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 ⊆ wss 3944 𝒫 cpw 4604 ‘cfv 6549 ficfi 9435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 |
This theorem is referenced by: ispisys2 33903 sigapildsyslem 33911 sigapildsys 33912 ldgenpisyslem1 33913 ldgenpisyslem3 33915 ldgenpisys 33916 |
Copyright terms: Public domain | W3C validator |