Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispisys Structured version   Visualization version   GIF version

Theorem ispisys 34118
Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
ispisys (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠
Allowed substitution hint:   𝑃(𝑠)

Proof of Theorem ispisys
StepHypRef Expression
1 fveq2 6826 . . 3 (𝑠 = 𝑆 → (fi‘𝑠) = (fi‘𝑆))
2 id 22 . . 3 (𝑠 = 𝑆𝑠 = 𝑆)
31, 2sseq12d 3971 . 2 (𝑠 = 𝑆 → ((fi‘𝑠) ⊆ 𝑠 ↔ (fi‘𝑆) ⊆ 𝑆))
4 ispisys.p . 2 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
53, 4elrab2 3653 1 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905  𝒫 cpw 4553  cfv 6486  ficfi 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494
This theorem is referenced by:  ispisys2  34119  sigapildsyslem  34127  sigapildsys  34128  ldgenpisyslem1  34129  ldgenpisyslem3  34131  ldgenpisys  34132
  Copyright terms: Public domain W3C validator