Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispisys Structured version   Visualization version   GIF version

Theorem ispisys 33902
Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
ispisys (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠
Allowed substitution hint:   𝑃(𝑠)

Proof of Theorem ispisys
StepHypRef Expression
1 fveq2 6896 . . 3 (𝑠 = 𝑆 → (fi‘𝑠) = (fi‘𝑆))
2 id 22 . . 3 (𝑠 = 𝑆𝑠 = 𝑆)
31, 2sseq12d 4010 . 2 (𝑠 = 𝑆 → ((fi‘𝑠) ⊆ 𝑠 ↔ (fi‘𝑆) ⊆ 𝑆))
4 ispisys.p . 2 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
53, 4elrab2 3682 1 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1533  wcel 2098  {crab 3418  wss 3944  𝒫 cpw 4604  cfv 6549  ficfi 9435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557
This theorem is referenced by:  ispisys2  33903  sigapildsyslem  33911  sigapildsys  33912  ldgenpisyslem1  33913  ldgenpisyslem3  33915  ldgenpisys  33916
  Copyright terms: Public domain W3C validator