Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispisys Structured version   Visualization version   GIF version

Theorem ispisys 32020
Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
ispisys (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠
Allowed substitution hint:   𝑃(𝑠)

Proof of Theorem ispisys
StepHypRef Expression
1 fveq2 6756 . . 3 (𝑠 = 𝑆 → (fi‘𝑠) = (fi‘𝑆))
2 id 22 . . 3 (𝑠 = 𝑆𝑠 = 𝑆)
31, 2sseq12d 3950 . 2 (𝑠 = 𝑆 → ((fi‘𝑠) ⊆ 𝑠 ↔ (fi‘𝑆) ⊆ 𝑆))
4 ispisys.p . 2 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
53, 4elrab2 3620 1 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883  𝒫 cpw 4530  cfv 6418  ficfi 9099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by:  ispisys2  32021  sigapildsyslem  32029  sigapildsys  32030  ldgenpisyslem1  32031  ldgenpisyslem3  32033  ldgenpisys  32034
  Copyright terms: Public domain W3C validator