| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ispisys | Structured version Visualization version GIF version | ||
| Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020.) |
| Ref | Expression |
|---|---|
| ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
| Ref | Expression |
|---|---|
| ispisys | ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . 3 ⊢ (𝑠 = 𝑆 → (fi‘𝑠) = (fi‘𝑆)) | |
| 2 | id 22 | . . 3 ⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) | |
| 3 | 1, 2 | sseq12d 3964 | . 2 ⊢ (𝑠 = 𝑆 → ((fi‘𝑠) ⊆ 𝑠 ↔ (fi‘𝑆) ⊆ 𝑆)) |
| 4 | ispisys.p | . 2 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
| 5 | 3, 4 | elrab2 3646 | 1 ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 𝒫 cpw 4549 ‘cfv 6486 ficfi 9301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 |
| This theorem is referenced by: ispisys2 34187 sigapildsyslem 34195 sigapildsys 34196 ldgenpisyslem1 34197 ldgenpisyslem3 34199 ldgenpisys 34200 |
| Copyright terms: Public domain | W3C validator |