Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispisys2 Structured version   Visualization version   GIF version

Theorem ispisys2 34143
Description: The property of being a pi-system, expanded version. Pi-systems are closed under finite intersections. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
ispisys2 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
Distinct variable groups:   𝑂,𝑠,𝑥   𝑆,𝑠,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑠)

Proof of Theorem ispisys2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ispisys.p . . 3 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
21ispisys 34142 . 2 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
3 dfss3 3935 . . . 4 ((fi‘𝑆) ⊆ 𝑆 ↔ ∀𝑦 ∈ (fi‘𝑆)𝑦𝑆)
4 elex 3468 . . . . . . 7 (𝑆 ∈ 𝒫 𝒫 𝑂𝑆 ∈ V)
54adantr 480 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑆 ∈ V)
6 simpr 484 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}))
7 eldifsn 4750 . . . . . . . . . 10 (𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑥 ≠ ∅))
86, 7sylib 218 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → (𝑥 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑥 ≠ ∅))
98simpld 494 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (𝒫 𝑆 ∩ Fin))
109elin1d 4167 . . . . . . 7 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ 𝒫 𝑆)
1110elpwid 4572 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥𝑆)
128simprd 495 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ≠ ∅)
139elin2d 4168 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ Fin)
14 elfir 9366 . . . . . 6 ((𝑆 ∈ V ∧ (𝑥𝑆𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)) → 𝑥 ∈ (fi‘𝑆))
155, 11, 12, 13, 14syl13anc 1374 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (fi‘𝑆))
16 elfi2 9365 . . . . . 6 (𝑆 ∈ 𝒫 𝒫 𝑂 → (𝑦 ∈ (fi‘𝑆) ↔ ∃𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})𝑦 = 𝑥))
1716biimpa 476 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 ∈ (fi‘𝑆)) → ∃𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})𝑦 = 𝑥)
18 simpr 484 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 = 𝑥) → 𝑦 = 𝑥)
1918eleq1d 2813 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 = 𝑥) → (𝑦𝑆 𝑥𝑆))
2015, 17, 19ralxfrd 5363 . . . 4 (𝑆 ∈ 𝒫 𝒫 𝑂 → (∀𝑦 ∈ (fi‘𝑆)𝑦𝑆 ↔ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
213, 20bitrid 283 . . 3 (𝑆 ∈ 𝒫 𝒫 𝑂 → ((fi‘𝑆) ⊆ 𝑆 ↔ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
2221pm5.32i 574 . 2 ((𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆) ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
232, 22bitri 275 1 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589   cint 4910  cfv 6511  Fincfn 8918  ficfi 9361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-fi 9362
This theorem is referenced by:  inelpisys  34144  sigapisys  34145  dynkin  34157
  Copyright terms: Public domain W3C validator