Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispisys2 Structured version   Visualization version   GIF version

Theorem ispisys2 34187
Description: The property of being a pi-system, expanded version. Pi-systems are closed under finite intersections. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypothesis
Ref Expression
ispisys.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
Assertion
Ref Expression
ispisys2 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
Distinct variable groups:   𝑂,𝑠,𝑥   𝑆,𝑠,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑠)

Proof of Theorem ispisys2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ispisys.p . . 3 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
21ispisys 34186 . 2 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆))
3 dfss3 3919 . . . 4 ((fi‘𝑆) ⊆ 𝑆 ↔ ∀𝑦 ∈ (fi‘𝑆)𝑦𝑆)
4 elex 3458 . . . . . . 7 (𝑆 ∈ 𝒫 𝒫 𝑂𝑆 ∈ V)
54adantr 480 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑆 ∈ V)
6 simpr 484 . . . . . . . . . 10 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}))
7 eldifsn 4737 . . . . . . . . . 10 (𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) ↔ (𝑥 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑥 ≠ ∅))
86, 7sylib 218 . . . . . . . . 9 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → (𝑥 ∈ (𝒫 𝑆 ∩ Fin) ∧ 𝑥 ≠ ∅))
98simpld 494 . . . . . . . 8 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (𝒫 𝑆 ∩ Fin))
109elin1d 4153 . . . . . . 7 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ 𝒫 𝑆)
1110elpwid 4558 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥𝑆)
128simprd 495 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ≠ ∅)
139elin2d 4154 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ Fin)
14 elfir 9306 . . . . . 6 ((𝑆 ∈ V ∧ (𝑥𝑆𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin)) → 𝑥 ∈ (fi‘𝑆))
155, 11, 12, 13, 14syl13anc 1374 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})) → 𝑥 ∈ (fi‘𝑆))
16 elfi2 9305 . . . . . 6 (𝑆 ∈ 𝒫 𝒫 𝑂 → (𝑦 ∈ (fi‘𝑆) ↔ ∃𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})𝑦 = 𝑥))
1716biimpa 476 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 ∈ (fi‘𝑆)) → ∃𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅})𝑦 = 𝑥)
18 simpr 484 . . . . . 6 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 = 𝑥) → 𝑦 = 𝑥)
1918eleq1d 2818 . . . . 5 ((𝑆 ∈ 𝒫 𝒫 𝑂𝑦 = 𝑥) → (𝑦𝑆 𝑥𝑆))
2015, 17, 19ralxfrd 5348 . . . 4 (𝑆 ∈ 𝒫 𝒫 𝑂 → (∀𝑦 ∈ (fi‘𝑆)𝑦𝑆 ↔ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
213, 20bitrid 283 . . 3 (𝑆 ∈ 𝒫 𝒫 𝑂 → ((fi‘𝑆) ⊆ 𝑆 ↔ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
2221pm5.32i 574 . 2 ((𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆) ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
232, 22bitri 275 1 (𝑆𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀𝑥 ∈ ((𝒫 𝑆 ∩ Fin) ∖ {∅}) 𝑥𝑆))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cdif 3895  cin 3897  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575   cint 4897  cfv 6486  Fincfn 8875  ficfi 9301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-fi 9302
This theorem is referenced by:  inelpisys  34188  sigapisys  34189  dynkin  34201
  Copyright terms: Public domain W3C validator