Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisys Structured version   Visualization version   GIF version

Theorem ldgenpisys 33164
Description: The lambda system 𝐸 generated by a pi-system 𝑇 is also a pi-system. (Contributed by Thierry Arnoux, 18-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
Assertion
Ref Expression
ldgenpisys (𝜑𝐸𝑃)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝐸,𝑠,𝑡,𝑥,𝑦   𝑦,𝑂   𝑦,𝑇   𝑥,𝑉   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑠)   𝑃(𝑠)   𝑉(𝑦,𝑡,𝑠)

Proof of Theorem ldgenpisys
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4078 . . . 4 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))} ⊆ 𝒫 𝒫 𝑂
2 ldgenpisys.e . . . . . 6 𝐸 = {𝑡𝐿𝑇𝑡}
3 dynkin.l . . . . . . 7 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
4 dynkin.o . . . . . . 7 (𝜑𝑂𝑉)
5 ssrab2 4078 . . . . . . . . 9 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} ⊆ 𝒫 𝒫 𝑂
6 ldgenpisys.1 . . . . . . . . . 10 (𝜑𝑇𝑃)
7 dynkin.p . . . . . . . . . 10 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
86, 7eleqtrdi 2844 . . . . . . . . 9 (𝜑𝑇 ∈ {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠})
95, 8sselid 3981 . . . . . . . 8 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
109elpwid 4612 . . . . . . 7 (𝜑𝑇 ⊆ 𝒫 𝑂)
113, 4, 10ldsysgenld 33158 . . . . . 6 (𝜑 {𝑡𝐿𝑇𝑡} ∈ 𝐿)
122, 11eqeltrid 2838 . . . . 5 (𝜑𝐸𝐿)
1312, 3eleqtrdi 2844 . . . 4 (𝜑𝐸 ∈ {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))})
141, 13sselid 3981 . . 3 (𝜑𝐸 ∈ 𝒫 𝒫 𝑂)
15 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝑏𝐸)
16 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝑎𝐸)
174adantr 482 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑂𝑉)
186adantr 482 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑇𝑃)
19 simpr 486 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑎𝐸)
2010adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝐸) → 𝑇 ⊆ 𝒫 𝑂)
2120sselda 3983 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏 ∈ 𝒫 𝑂)
22 incom 4202 . . . . . . . . . . . . . . . 16 (𝑏𝑎) = (𝑎𝑏)
234ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑂𝑉)
246ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑇𝑃)
25 simpr 486 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏𝑇)
267, 3, 23, 2, 24, 25ldgenpisyslem3 33163 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸})
27 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑎𝐸)
2826, 27sseldd 3984 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑎 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸})
29 ineq2 4207 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑎 → (𝑏𝑐) = (𝑏𝑎))
3029eleq1d 2819 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑎 → ((𝑏𝑐) ∈ 𝐸 ↔ (𝑏𝑎) ∈ 𝐸))
3130elrab 3684 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸} ↔ (𝑎 ∈ 𝒫 𝑂 ∧ (𝑏𝑎) ∈ 𝐸))
3228, 31sylib 217 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑎 ∈ 𝒫 𝑂 ∧ (𝑏𝑎) ∈ 𝐸))
3332simprd 497 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑏𝑎) ∈ 𝐸)
3422, 33eqeltrrid 2839 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑎𝑏) ∈ 𝐸)
3521, 34jca 513 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑏 ∈ 𝒫 𝑂 ∧ (𝑎𝑏) ∈ 𝐸))
36 ineq2 4207 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑏 → (𝑎𝑐) = (𝑎𝑏))
3736eleq1d 2819 . . . . . . . . . . . . . . 15 (𝑐 = 𝑏 → ((𝑎𝑐) ∈ 𝐸 ↔ (𝑎𝑏) ∈ 𝐸))
3837elrab 3684 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸} ↔ (𝑏 ∈ 𝒫 𝑂 ∧ (𝑎𝑏) ∈ 𝐸))
3935, 38sylibr 233 . . . . . . . . . . . . 13 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
4039ex 414 . . . . . . . . . . . 12 ((𝜑𝑎𝐸) → (𝑏𝑇𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸}))
4140ssrdv 3989 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑇 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
427, 3, 17, 2, 18, 19, 41ldgenpisyslem2 33162 . . . . . . . . . 10 ((𝜑𝑎𝐸) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
4316, 42syldan 592 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
44 ssrab 4071 . . . . . . . . 9 (𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸} ↔ (𝐸 ⊆ 𝒫 𝑂 ∧ ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸))
4543, 44sylib 217 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → (𝐸 ⊆ 𝒫 𝑂 ∧ ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸))
4645simprd 497 . . . . . . 7 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸)
4737rspcv 3609 . . . . . . 7 (𝑏𝐸 → (∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸 → (𝑎𝑏) ∈ 𝐸))
4815, 46, 47sylc 65 . . . . . 6 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → (𝑎𝑏) ∈ 𝐸)
4948ralrimivva 3201 . . . . 5 (𝜑 → ∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸)
50 inficl 9420 . . . . . 6 (𝐸𝐿 → (∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸 ↔ (fi‘𝐸) = 𝐸))
5112, 50syl 17 . . . . 5 (𝜑 → (∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸 ↔ (fi‘𝐸) = 𝐸))
5249, 51mpbid 231 . . . 4 (𝜑 → (fi‘𝐸) = 𝐸)
53 eqimss 4041 . . . 4 ((fi‘𝐸) = 𝐸 → (fi‘𝐸) ⊆ 𝐸)
5452, 53syl 17 . . 3 (𝜑 → (fi‘𝐸) ⊆ 𝐸)
5514, 54jca 513 . 2 (𝜑 → (𝐸 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝐸) ⊆ 𝐸))
567ispisys 33150 . 2 (𝐸𝑃 ↔ (𝐸 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝐸) ⊆ 𝐸))
5755, 56sylibr 233 1 (𝜑𝐸𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  {crab 3433  cdif 3946  cin 3948  wss 3949  c0 4323  𝒫 cpw 4603   cuni 4909   cint 4951  Disj wdisj 5114   class class class wbr 5149  cfv 6544  ωcom 7855  cdom 8937  ficfi 9405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-ac2 10458
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fi 9406  df-oi 9505  df-dju 9896  df-card 9934  df-acn 9937  df-ac 10111  df-siga 33107
This theorem is referenced by:  dynkin  33165
  Copyright terms: Public domain W3C validator