Step | Hyp | Ref
| Expression |
1 | | ssrab2 4013 |
. . . 4
⊢ {𝑠 ∈ 𝒫 𝒫
𝑂 ∣ (∅ ∈
𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} ⊆ 𝒫 𝒫 𝑂 |
2 | | ldgenpisys.e |
. . . . . 6
⊢ 𝐸 = ∩
{𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
3 | | dynkin.l |
. . . . . . 7
⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
4 | | dynkin.o |
. . . . . . 7
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
5 | | ssrab2 4013 |
. . . . . . . . 9
⊢ {𝑠 ∈ 𝒫 𝒫
𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} ⊆ 𝒫 𝒫 𝑂 |
6 | | ldgenpisys.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ 𝑃) |
7 | | dynkin.p |
. . . . . . . . . 10
⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
8 | 6, 7 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}) |
9 | 5, 8 | sselid 3919 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
10 | 9 | elpwid 4544 |
. . . . . . 7
⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
11 | 3, 4, 10 | ldsysgenld 32128 |
. . . . . 6
⊢ (𝜑 → ∩ {𝑡
∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ∈ 𝐿) |
12 | 2, 11 | eqeltrid 2843 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ 𝐿) |
13 | 12, 3 | eleqtrdi 2849 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))}) |
14 | 1, 13 | sselid 3919 |
. . 3
⊢ (𝜑 → 𝐸 ∈ 𝒫 𝒫 𝑂) |
15 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸)) → 𝑏 ∈ 𝐸) |
16 | | simprl 768 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸)) → 𝑎 ∈ 𝐸) |
17 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐸) → 𝑂 ∈ 𝑉) |
18 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐸) → 𝑇 ∈ 𝑃) |
19 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐸) → 𝑎 ∈ 𝐸) |
20 | 10 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐸) → 𝑇 ⊆ 𝒫 𝑂) |
21 | 20 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → 𝑏 ∈ 𝒫 𝑂) |
22 | | incom 4135 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 ∩ 𝑎) = (𝑎 ∩ 𝑏) |
23 | 4 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → 𝑂 ∈ 𝑉) |
24 | 6 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → 𝑇 ∈ 𝑃) |
25 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → 𝑏 ∈ 𝑇) |
26 | 7, 3, 23, 2, 24, 25 | ldgenpisyslem3 32133 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏 ∩ 𝑐) ∈ 𝐸}) |
27 | | simplr 766 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → 𝑎 ∈ 𝐸) |
28 | 26, 27 | sseldd 3922 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → 𝑎 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏 ∩ 𝑐) ∈ 𝐸}) |
29 | | ineq2 4140 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑎 → (𝑏 ∩ 𝑐) = (𝑏 ∩ 𝑎)) |
30 | 29 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 = 𝑎 → ((𝑏 ∩ 𝑐) ∈ 𝐸 ↔ (𝑏 ∩ 𝑎) ∈ 𝐸)) |
31 | 30 | elrab 3624 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏 ∩ 𝑐) ∈ 𝐸} ↔ (𝑎 ∈ 𝒫 𝑂 ∧ (𝑏 ∩ 𝑎) ∈ 𝐸)) |
32 | 28, 31 | sylib 217 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → (𝑎 ∈ 𝒫 𝑂 ∧ (𝑏 ∩ 𝑎) ∈ 𝐸)) |
33 | 32 | simprd 496 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → (𝑏 ∩ 𝑎) ∈ 𝐸) |
34 | 22, 33 | eqeltrrid 2844 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → (𝑎 ∩ 𝑏) ∈ 𝐸) |
35 | 21, 34 | jca 512 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → (𝑏 ∈ 𝒫 𝑂 ∧ (𝑎 ∩ 𝑏) ∈ 𝐸)) |
36 | | ineq2 4140 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 = 𝑏 → (𝑎 ∩ 𝑐) = (𝑎 ∩ 𝑏)) |
37 | 36 | eleq1d 2823 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 = 𝑏 → ((𝑎 ∩ 𝑐) ∈ 𝐸 ↔ (𝑎 ∩ 𝑏) ∈ 𝐸)) |
38 | 37 | elrab 3624 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎 ∩ 𝑐) ∈ 𝐸} ↔ (𝑏 ∈ 𝒫 𝑂 ∧ (𝑎 ∩ 𝑏) ∈ 𝐸)) |
39 | 35, 38 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐸) ∧ 𝑏 ∈ 𝑇) → 𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎 ∩ 𝑐) ∈ 𝐸}) |
40 | 39 | ex 413 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐸) → (𝑏 ∈ 𝑇 → 𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎 ∩ 𝑐) ∈ 𝐸})) |
41 | 40 | ssrdv 3927 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐸) → 𝑇 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎 ∩ 𝑐) ∈ 𝐸}) |
42 | 7, 3, 17, 2, 18, 19, 41 | ldgenpisyslem2 32132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐸) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎 ∩ 𝑐) ∈ 𝐸}) |
43 | 16, 42 | syldan 591 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸)) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎 ∩ 𝑐) ∈ 𝐸}) |
44 | | ssrab 4006 |
. . . . . . . . 9
⊢ (𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎 ∩ 𝑐) ∈ 𝐸} ↔ (𝐸 ⊆ 𝒫 𝑂 ∧ ∀𝑐 ∈ 𝐸 (𝑎 ∩ 𝑐) ∈ 𝐸)) |
45 | 43, 44 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸)) → (𝐸 ⊆ 𝒫 𝑂 ∧ ∀𝑐 ∈ 𝐸 (𝑎 ∩ 𝑐) ∈ 𝐸)) |
46 | 45 | simprd 496 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸)) → ∀𝑐 ∈ 𝐸 (𝑎 ∩ 𝑐) ∈ 𝐸) |
47 | 37 | rspcv 3557 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐸 → (∀𝑐 ∈ 𝐸 (𝑎 ∩ 𝑐) ∈ 𝐸 → (𝑎 ∩ 𝑏) ∈ 𝐸)) |
48 | 15, 46, 47 | sylc 65 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐸 ∧ 𝑏 ∈ 𝐸)) → (𝑎 ∩ 𝑏) ∈ 𝐸) |
49 | 48 | ralrimivva 3123 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 (𝑎 ∩ 𝑏) ∈ 𝐸) |
50 | | inficl 9184 |
. . . . . 6
⊢ (𝐸 ∈ 𝐿 → (∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 (𝑎 ∩ 𝑏) ∈ 𝐸 ↔ (fi‘𝐸) = 𝐸)) |
51 | 12, 50 | syl 17 |
. . . . 5
⊢ (𝜑 → (∀𝑎 ∈ 𝐸 ∀𝑏 ∈ 𝐸 (𝑎 ∩ 𝑏) ∈ 𝐸 ↔ (fi‘𝐸) = 𝐸)) |
52 | 49, 51 | mpbid 231 |
. . . 4
⊢ (𝜑 → (fi‘𝐸) = 𝐸) |
53 | | eqimss 3977 |
. . . 4
⊢
((fi‘𝐸) =
𝐸 → (fi‘𝐸) ⊆ 𝐸) |
54 | 52, 53 | syl 17 |
. . 3
⊢ (𝜑 → (fi‘𝐸) ⊆ 𝐸) |
55 | 14, 54 | jca 512 |
. 2
⊢ (𝜑 → (𝐸 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝐸) ⊆ 𝐸)) |
56 | 7 | ispisys 32120 |
. 2
⊢ (𝐸 ∈ 𝑃 ↔ (𝐸 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝐸) ⊆ 𝐸)) |
57 | 55, 56 | sylibr 233 |
1
⊢ (𝜑 → 𝐸 ∈ 𝑃) |