Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisyslem3 Structured version   Visualization version   GIF version

Theorem ldgenpisyslem3 34146
Description: Lemma for ldgenpisys 34147. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
ldgenpisyslem3.1 (𝜑𝐴𝑇)
Assertion
Ref Expression
ldgenpisyslem3 (𝜑𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝐴,𝑏,𝑠,𝑡,𝑥,𝑦   𝐸,𝑏,𝑠,𝑡,𝑥,𝑦   𝑂,𝑏,𝑦   𝑇,𝑏,𝑦   𝑥,𝑉   𝜑,𝑏,𝑦
Allowed substitution hints:   𝜑(𝑠)   𝑃(𝑠,𝑏)   𝐿(𝑏)   𝑉(𝑦,𝑡,𝑠,𝑏)

Proof of Theorem ldgenpisyslem3
StepHypRef Expression
1 dynkin.p . 2 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2 dynkin.l . 2 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3 dynkin.o . 2 (𝜑𝑂𝑉)
4 ldgenpisys.e . 2 𝐸 = {𝑡𝐿𝑇𝑡}
5 ldgenpisys.1 . 2 (𝜑𝑇𝑃)
6 id 22 . . . . . 6 (𝑇𝑡𝑇𝑡)
76rgenw 3063 . . . . 5 𝑡𝐿 (𝑇𝑡𝑇𝑡)
8 ssintrab 4976 . . . . 5 (𝑇 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝑇𝑡))
97, 8mpbir 231 . . . 4 𝑇 {𝑡𝐿𝑇𝑡}
109, 4sseqtrri 4033 . . 3 𝑇𝐸
11 ldgenpisyslem3.1 . . 3 (𝜑𝐴𝑇)
1210, 11sselid 3993 . 2 (𝜑𝐴𝐸)
131ispisys 34133 . . . . . . 7 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
145, 13sylib 218 . . . . . 6 (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
1514simpld 494 . . . . 5 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
16 elpwi 4612 . . . . 5 (𝑇 ∈ 𝒫 𝒫 𝑂𝑇 ⊆ 𝒫 𝑂)
1715, 16syl 17 . . . 4 (𝜑𝑇 ⊆ 𝒫 𝑂)
185adantr 480 . . . . . . 7 ((𝜑𝑏𝑇) → 𝑇𝑃)
1911adantr 480 . . . . . . 7 ((𝜑𝑏𝑇) → 𝐴𝑇)
20 simpr 484 . . . . . . 7 ((𝜑𝑏𝑇) → 𝑏𝑇)
211inelpisys 34135 . . . . . . 7 ((𝑇𝑃𝐴𝑇𝑏𝑇) → (𝐴𝑏) ∈ 𝑇)
2218, 19, 20, 21syl3anc 1370 . . . . . 6 ((𝜑𝑏𝑇) → (𝐴𝑏) ∈ 𝑇)
2310, 22sselid 3993 . . . . 5 ((𝜑𝑏𝑇) → (𝐴𝑏) ∈ 𝐸)
2423ralrimiva 3144 . . . 4 (𝜑 → ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸)
2517, 24jca 511 . . 3 (𝜑 → (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸))
26 ssrab 4083 . . 3 (𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸))
2725, 26sylibr 234 . 2 (𝜑𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
281, 2, 3, 4, 5, 12, 27ldgenpisyslem2 34145 1 (𝜑𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cdif 3960  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   cint 4951  Disj wdisj 5115   class class class wbr 5148  cfv 6563  ωcom 7887  cdom 8982  ficfi 9448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980
This theorem is referenced by:  ldgenpisys  34147
  Copyright terms: Public domain W3C validator