| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldgenpisyslem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for ldgenpisys 34197. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
| Ref | Expression |
|---|---|
| dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
| dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
| dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| ldgenpisys.e | ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
| ldgenpisys.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| ldgenpisyslem3.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
| Ref | Expression |
|---|---|
| ldgenpisyslem3 | ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dynkin.p | . 2 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
| 2 | dynkin.l | . 2 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
| 3 | dynkin.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 4 | ldgenpisys.e | . 2 ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} | |
| 5 | ldgenpisys.1 | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 6 | id 22 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) | |
| 7 | 6 | rgenw 3055 | . . . . 5 ⊢ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) |
| 8 | ssintrab 4947 | . . . . 5 ⊢ (𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
| 9 | 7, 8 | mpbir 231 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
| 10 | 9, 4 | sseqtrri 4008 | . . 3 ⊢ 𝑇 ⊆ 𝐸 |
| 11 | ldgenpisyslem3.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
| 12 | 10, 11 | sselid 3956 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
| 13 | 1 | ispisys 34183 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
| 14 | 5, 13 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
| 15 | 14 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
| 16 | elpwi 4582 | . . . . 5 ⊢ (𝑇 ∈ 𝒫 𝒫 𝑂 → 𝑇 ⊆ 𝒫 𝑂) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
| 18 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑇 ∈ 𝑃) |
| 19 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝐴 ∈ 𝑇) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑏 ∈ 𝑇) | |
| 21 | 1 | inelpisys 34185 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝑃 ∧ 𝐴 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
| 22 | 18, 19, 20, 21 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
| 23 | 10, 22 | sselid 3956 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝐸) |
| 24 | 23 | ralrimiva 3132 | . . . 4 ⊢ (𝜑 → ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸) |
| 25 | 17, 24 | jca 511 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) |
| 26 | ssrab 4048 | . . 3 ⊢ (𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ↔ (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
| 28 | 1, 2, 3, 4, 5, 12, 27 | ldgenpisyslem2 34195 | 1 ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ∅c0 4308 𝒫 cpw 4575 ∪ cuni 4883 ∩ cint 4922 Disj wdisj 5086 class class class wbr 5119 ‘cfv 6531 ωcom 7861 ≼ cdom 8957 ficfi 9422 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-oi 9524 df-dju 9915 df-card 9953 df-acn 9956 |
| This theorem is referenced by: ldgenpisys 34197 |
| Copyright terms: Public domain | W3C validator |