Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisyslem3 Structured version   Visualization version   GIF version

Theorem ldgenpisyslem3 34132
Description: Lemma for ldgenpisys 34133. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
ldgenpisyslem3.1 (𝜑𝐴𝑇)
Assertion
Ref Expression
ldgenpisyslem3 (𝜑𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝐴,𝑏,𝑠,𝑡,𝑥,𝑦   𝐸,𝑏,𝑠,𝑡,𝑥,𝑦   𝑂,𝑏,𝑦   𝑇,𝑏,𝑦   𝑥,𝑉   𝜑,𝑏,𝑦
Allowed substitution hints:   𝜑(𝑠)   𝑃(𝑠,𝑏)   𝐿(𝑏)   𝑉(𝑦,𝑡,𝑠,𝑏)

Proof of Theorem ldgenpisyslem3
StepHypRef Expression
1 dynkin.p . 2 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2 dynkin.l . 2 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3 dynkin.o . 2 (𝜑𝑂𝑉)
4 ldgenpisys.e . 2 𝐸 = {𝑡𝐿𝑇𝑡}
5 ldgenpisys.1 . 2 (𝜑𝑇𝑃)
6 id 22 . . . . . 6 (𝑇𝑡𝑇𝑡)
76rgenw 3048 . . . . 5 𝑡𝐿 (𝑇𝑡𝑇𝑡)
8 ssintrab 4921 . . . . 5 (𝑇 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝑇𝑡))
97, 8mpbir 231 . . . 4 𝑇 {𝑡𝐿𝑇𝑡}
109, 4sseqtrri 3985 . . 3 𝑇𝐸
11 ldgenpisyslem3.1 . . 3 (𝜑𝐴𝑇)
1210, 11sselid 3933 . 2 (𝜑𝐴𝐸)
131ispisys 34119 . . . . . . 7 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
145, 13sylib 218 . . . . . 6 (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
1514simpld 494 . . . . 5 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
16 elpwi 4558 . . . . 5 (𝑇 ∈ 𝒫 𝒫 𝑂𝑇 ⊆ 𝒫 𝑂)
1715, 16syl 17 . . . 4 (𝜑𝑇 ⊆ 𝒫 𝑂)
185adantr 480 . . . . . . 7 ((𝜑𝑏𝑇) → 𝑇𝑃)
1911adantr 480 . . . . . . 7 ((𝜑𝑏𝑇) → 𝐴𝑇)
20 simpr 484 . . . . . . 7 ((𝜑𝑏𝑇) → 𝑏𝑇)
211inelpisys 34121 . . . . . . 7 ((𝑇𝑃𝐴𝑇𝑏𝑇) → (𝐴𝑏) ∈ 𝑇)
2218, 19, 20, 21syl3anc 1373 . . . . . 6 ((𝜑𝑏𝑇) → (𝐴𝑏) ∈ 𝑇)
2310, 22sselid 3933 . . . . 5 ((𝜑𝑏𝑇) → (𝐴𝑏) ∈ 𝐸)
2423ralrimiva 3121 . . . 4 (𝜑 → ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸)
2517, 24jca 511 . . 3 (𝜑 → (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸))
26 ssrab 4024 . . 3 (𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸))
2725, 26sylibr 234 . 2 (𝜑𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
281, 2, 3, 4, 5, 12, 27ldgenpisyslem2 34131 1 (𝜑𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3394  cdif 3900  cin 3902  wss 3903  c0 4284  𝒫 cpw 4551   cuni 4858   cint 4896  Disj wdisj 5059   class class class wbr 5092  cfv 6482  ωcom 7799  cdom 8870  ficfi 9300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838
This theorem is referenced by:  ldgenpisys  34133
  Copyright terms: Public domain W3C validator