Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisyslem3 Structured version   Visualization version   GIF version

Theorem ldgenpisyslem3 34011
Description: Lemma for ldgenpisys 34012. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
ldgenpisyslem3.1 (𝜑𝐴𝑇)
Assertion
Ref Expression
ldgenpisyslem3 (𝜑𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝐴,𝑏,𝑠,𝑡,𝑥,𝑦   𝐸,𝑏,𝑠,𝑡,𝑥,𝑦   𝑂,𝑏,𝑦   𝑇,𝑏,𝑦   𝑥,𝑉   𝜑,𝑏,𝑦
Allowed substitution hints:   𝜑(𝑠)   𝑃(𝑠,𝑏)   𝐿(𝑏)   𝑉(𝑦,𝑡,𝑠,𝑏)

Proof of Theorem ldgenpisyslem3
StepHypRef Expression
1 dynkin.p . 2 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
2 dynkin.l . 2 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3 dynkin.o . 2 (𝜑𝑂𝑉)
4 ldgenpisys.e . 2 𝐸 = {𝑡𝐿𝑇𝑡}
5 ldgenpisys.1 . 2 (𝜑𝑇𝑃)
6 id 22 . . . . . 6 (𝑇𝑡𝑇𝑡)
76rgenw 3055 . . . . 5 𝑡𝐿 (𝑇𝑡𝑇𝑡)
8 ssintrab 4971 . . . . 5 (𝑇 {𝑡𝐿𝑇𝑡} ↔ ∀𝑡𝐿 (𝑇𝑡𝑇𝑡))
97, 8mpbir 230 . . . 4 𝑇 {𝑡𝐿𝑇𝑡}
109, 4sseqtrri 4016 . . 3 𝑇𝐸
11 ldgenpisyslem3.1 . . 3 (𝜑𝐴𝑇)
1210, 11sselid 3976 . 2 (𝜑𝐴𝐸)
131ispisys 33998 . . . . . . 7 (𝑇𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
145, 13sylib 217 . . . . . 6 (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇))
1514simpld 493 . . . . 5 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
16 elpwi 4604 . . . . 5 (𝑇 ∈ 𝒫 𝒫 𝑂𝑇 ⊆ 𝒫 𝑂)
1715, 16syl 17 . . . 4 (𝜑𝑇 ⊆ 𝒫 𝑂)
185adantr 479 . . . . . . 7 ((𝜑𝑏𝑇) → 𝑇𝑃)
1911adantr 479 . . . . . . 7 ((𝜑𝑏𝑇) → 𝐴𝑇)
20 simpr 483 . . . . . . 7 ((𝜑𝑏𝑇) → 𝑏𝑇)
211inelpisys 34000 . . . . . . 7 ((𝑇𝑃𝐴𝑇𝑏𝑇) → (𝐴𝑏) ∈ 𝑇)
2218, 19, 20, 21syl3anc 1368 . . . . . 6 ((𝜑𝑏𝑇) → (𝐴𝑏) ∈ 𝑇)
2310, 22sselid 3976 . . . . 5 ((𝜑𝑏𝑇) → (𝐴𝑏) ∈ 𝐸)
2423ralrimiva 3136 . . . 4 (𝜑 → ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸)
2517, 24jca 510 . . 3 (𝜑 → (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸))
26 ssrab 4066 . . 3 (𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸} ↔ (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏𝑇 (𝐴𝑏) ∈ 𝐸))
2725, 26sylibr 233 . 2 (𝜑𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
281, 2, 3, 4, 5, 12, 27ldgenpisyslem2 34010 1 (𝜑𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴𝑏) ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  {crab 3419  cdif 3943  cin 3945  wss 3946  c0 4322  𝒫 cpw 4597   cuni 4905   cint 4946  Disj wdisj 5110   class class class wbr 5145  cfv 6546  ωcom 7868  cdom 8964  ficfi 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-disj 5111  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fi 9447  df-oi 9546  df-dju 9937  df-card 9975  df-acn 9978
This theorem is referenced by:  ldgenpisys  34012
  Copyright terms: Public domain W3C validator