![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldgenpisyslem3 | Structured version Visualization version GIF version |
Description: Lemma for ldgenpisys 34147. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
Ref | Expression |
---|---|
dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
ldgenpisys.e | ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
ldgenpisys.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
ldgenpisyslem3.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
Ref | Expression |
---|---|
ldgenpisyslem3 | ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | . 2 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
2 | dynkin.l | . 2 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
3 | dynkin.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
4 | ldgenpisys.e | . 2 ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} | |
5 | ldgenpisys.1 | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
6 | id 22 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) | |
7 | 6 | rgenw 3063 | . . . . 5 ⊢ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) |
8 | ssintrab 4976 | . . . . 5 ⊢ (𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
9 | 7, 8 | mpbir 231 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
10 | 9, 4 | sseqtrri 4033 | . . 3 ⊢ 𝑇 ⊆ 𝐸 |
11 | ldgenpisyslem3.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
12 | 10, 11 | sselid 3993 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
13 | 1 | ispisys 34133 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
14 | 5, 13 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
15 | 14 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
16 | elpwi 4612 | . . . . 5 ⊢ (𝑇 ∈ 𝒫 𝒫 𝑂 → 𝑇 ⊆ 𝒫 𝑂) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
18 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑇 ∈ 𝑃) |
19 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝐴 ∈ 𝑇) |
20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑏 ∈ 𝑇) | |
21 | 1 | inelpisys 34135 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝑃 ∧ 𝐴 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
22 | 18, 19, 20, 21 | syl3anc 1370 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
23 | 10, 22 | sselid 3993 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝐸) |
24 | 23 | ralrimiva 3144 | . . . 4 ⊢ (𝜑 → ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸) |
25 | 17, 24 | jca 511 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) |
26 | ssrab 4083 | . . 3 ⊢ (𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ↔ (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) | |
27 | 25, 26 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
28 | 1, 2, 3, 4, 5, 12, 27 | ldgenpisyslem2 34145 | 1 ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 ∪ cuni 4912 ∩ cint 4951 Disj wdisj 5115 class class class wbr 5148 ‘cfv 6563 ωcom 7887 ≼ cdom 8982 ficfi 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fi 9449 df-oi 9548 df-dju 9939 df-card 9977 df-acn 9980 |
This theorem is referenced by: ldgenpisys 34147 |
Copyright terms: Public domain | W3C validator |