![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldgenpisyslem3 | Structured version Visualization version GIF version |
Description: Lemma for ldgenpisys 34012. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
Ref | Expression |
---|---|
dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
ldgenpisys.e | ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
ldgenpisys.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
ldgenpisyslem3.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
Ref | Expression |
---|---|
ldgenpisyslem3 | ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | . 2 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
2 | dynkin.l | . 2 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
3 | dynkin.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
4 | ldgenpisys.e | . 2 ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} | |
5 | ldgenpisys.1 | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
6 | id 22 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) | |
7 | 6 | rgenw 3055 | . . . . 5 ⊢ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) |
8 | ssintrab 4971 | . . . . 5 ⊢ (𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
9 | 7, 8 | mpbir 230 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
10 | 9, 4 | sseqtrri 4016 | . . 3 ⊢ 𝑇 ⊆ 𝐸 |
11 | ldgenpisyslem3.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
12 | 10, 11 | sselid 3976 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
13 | 1 | ispisys 33998 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
14 | 5, 13 | sylib 217 | . . . . . 6 ⊢ (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
15 | 14 | simpld 493 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
16 | elpwi 4604 | . . . . 5 ⊢ (𝑇 ∈ 𝒫 𝒫 𝑂 → 𝑇 ⊆ 𝒫 𝑂) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
18 | 5 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑇 ∈ 𝑃) |
19 | 11 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝐴 ∈ 𝑇) |
20 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑏 ∈ 𝑇) | |
21 | 1 | inelpisys 34000 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝑃 ∧ 𝐴 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
22 | 18, 19, 20, 21 | syl3anc 1368 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
23 | 10, 22 | sselid 3976 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝐸) |
24 | 23 | ralrimiva 3136 | . . . 4 ⊢ (𝜑 → ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸) |
25 | 17, 24 | jca 510 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) |
26 | ssrab 4066 | . . 3 ⊢ (𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ↔ (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) | |
27 | 25, 26 | sylibr 233 | . 2 ⊢ (𝜑 → 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
28 | 1, 2, 3, 4, 5, 12, 27 | ldgenpisyslem2 34010 | 1 ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 ∖ cdif 3943 ∩ cin 3945 ⊆ wss 3946 ∅c0 4322 𝒫 cpw 4597 ∪ cuni 4905 ∩ cint 4946 Disj wdisj 5110 class class class wbr 5145 ‘cfv 6546 ωcom 7868 ≼ cdom 8964 ficfi 9446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-disj 5111 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fi 9447 df-oi 9546 df-dju 9937 df-card 9975 df-acn 9978 |
This theorem is referenced by: ldgenpisys 34012 |
Copyright terms: Public domain | W3C validator |