| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldgenpisyslem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for ldgenpisys 34133. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
| Ref | Expression |
|---|---|
| dynkin.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
| dynkin.l | ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
| dynkin.o | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| ldgenpisys.e | ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
| ldgenpisys.1 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| ldgenpisyslem3.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑇) |
| Ref | Expression |
|---|---|
| ldgenpisyslem3 | ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dynkin.p | . 2 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
| 2 | dynkin.l | . 2 ⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} | |
| 3 | dynkin.o | . 2 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 4 | ldgenpisys.e | . 2 ⊢ 𝐸 = ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} | |
| 5 | ldgenpisys.1 | . 2 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 6 | id 22 | . . . . . 6 ⊢ (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) | |
| 7 | 6 | rgenw 3048 | . . . . 5 ⊢ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡) |
| 8 | ssintrab 4921 | . . . . 5 ⊢ (𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝑇 ⊆ 𝑡 → 𝑇 ⊆ 𝑡)) | |
| 9 | 7, 8 | mpbir 231 | . . . 4 ⊢ 𝑇 ⊆ ∩ {𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡} |
| 10 | 9, 4 | sseqtrri 3985 | . . 3 ⊢ 𝑇 ⊆ 𝐸 |
| 11 | ldgenpisyslem3.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑇) | |
| 12 | 10, 11 | sselid 3933 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
| 13 | 1 | ispisys 34119 | . . . . . . 7 ⊢ (𝑇 ∈ 𝑃 ↔ (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
| 14 | 5, 13 | sylib 218 | . . . . . 6 ⊢ (𝜑 → (𝑇 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑇) ⊆ 𝑇)) |
| 15 | 14 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂) |
| 16 | elpwi 4558 | . . . . 5 ⊢ (𝑇 ∈ 𝒫 𝒫 𝑂 → 𝑇 ⊆ 𝒫 𝑂) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝒫 𝑂) |
| 18 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑇 ∈ 𝑃) |
| 19 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝐴 ∈ 𝑇) |
| 20 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → 𝑏 ∈ 𝑇) | |
| 21 | 1 | inelpisys 34121 | . . . . . . 7 ⊢ ((𝑇 ∈ 𝑃 ∧ 𝐴 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
| 22 | 18, 19, 20, 21 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝑇) |
| 23 | 10, 22 | sselid 3933 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑇) → (𝐴 ∩ 𝑏) ∈ 𝐸) |
| 24 | 23 | ralrimiva 3121 | . . . 4 ⊢ (𝜑 → ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸) |
| 25 | 17, 24 | jca 511 | . . 3 ⊢ (𝜑 → (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) |
| 26 | ssrab 4024 | . . 3 ⊢ (𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸} ↔ (𝑇 ⊆ 𝒫 𝑂 ∧ ∀𝑏 ∈ 𝑇 (𝐴 ∩ 𝑏) ∈ 𝐸)) | |
| 27 | 25, 26 | sylibr 234 | . 2 ⊢ (𝜑 → 𝑇 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
| 28 | 1, 2, 3, 4, 5, 12, 27 | ldgenpisyslem2 34131 | 1 ⊢ (𝜑 → 𝐸 ⊆ {𝑏 ∈ 𝒫 𝑂 ∣ (𝐴 ∩ 𝑏) ∈ 𝐸}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 ∖ cdif 3900 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 𝒫 cpw 4551 ∪ cuni 4858 ∩ cint 4896 Disj wdisj 5059 class class class wbr 5092 ‘cfv 6482 ωcom 7799 ≼ cdom 8870 ficfi 9300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-oi 9402 df-dju 9797 df-card 9835 df-acn 9838 |
| This theorem is referenced by: ldgenpisys 34133 |
| Copyright terms: Public domain | W3C validator |