Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenid Structured version   Visualization version   GIF version

Theorem sigagenid 34132
Description: The sigma-algebra generated by a sigma-algebra is itself. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Assertion
Ref Expression
sigagenid (𝑆 ran sigAlgebra → (sigaGen‘𝑆) = 𝑆)

Proof of Theorem sigagenid
StepHypRef Expression
1 sgon 34105 . . 3 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
2 ssid 4018 . . 3 𝑆𝑆
3 sigagenss 34130 . . 3 ((𝑆 ∈ (sigAlgebra‘ 𝑆) ∧ 𝑆𝑆) → (sigaGen‘𝑆) ⊆ 𝑆)
41, 2, 3sylancl 586 . 2 (𝑆 ran sigAlgebra → (sigaGen‘𝑆) ⊆ 𝑆)
5 sssigagen 34126 . 2 (𝑆 ran sigAlgebra → 𝑆 ⊆ (sigaGen‘𝑆))
64, 5eqssd 4013 1 (𝑆 ran sigAlgebra → (sigaGen‘𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963   cuni 4912  ran crn 5690  cfv 6563  sigAlgebracsiga 34089  sigaGencsigagen 34119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-siga 34090  df-sigagen 34120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator