Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenid | Structured version Visualization version GIF version |
Description: The sigma-algebra generated by a sigma-algebra is itself. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
Ref | Expression |
---|---|
sigagenid | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (sigaGen‘𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgon 32088 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) | |
2 | ssid 3948 | . . 3 ⊢ 𝑆 ⊆ 𝑆 | |
3 | sigagenss 32113 | . . 3 ⊢ ((𝑆 ∈ (sigAlgebra‘∪ 𝑆) ∧ 𝑆 ⊆ 𝑆) → (sigaGen‘𝑆) ⊆ 𝑆) | |
4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (sigaGen‘𝑆) ⊆ 𝑆) |
5 | sssigagen 32109 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ⊆ (sigaGen‘𝑆)) | |
6 | 4, 5 | eqssd 3943 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (sigaGen‘𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∪ cuni 4845 ran crn 5591 ‘cfv 6432 sigAlgebracsiga 32072 sigaGencsigagen 32102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-fv 6440 df-siga 32073 df-sigagen 32103 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |