| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenid | Structured version Visualization version GIF version | ||
| Description: The sigma-algebra generated by a sigma-algebra is itself. (Contributed by Thierry Arnoux, 4-Jun-2017.) |
| Ref | Expression |
|---|---|
| sigagenid | ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (sigaGen‘𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sgon 34129 | . . 3 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘∪ 𝑆)) | |
| 2 | ssid 3952 | . . 3 ⊢ 𝑆 ⊆ 𝑆 | |
| 3 | sigagenss 34154 | . . 3 ⊢ ((𝑆 ∈ (sigAlgebra‘∪ 𝑆) ∧ 𝑆 ⊆ 𝑆) → (sigaGen‘𝑆) ⊆ 𝑆) | |
| 4 | 1, 2, 3 | sylancl 586 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (sigaGen‘𝑆) ⊆ 𝑆) |
| 5 | sssigagen 34150 | . 2 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → 𝑆 ⊆ (sigaGen‘𝑆)) | |
| 6 | 4, 5 | eqssd 3947 | 1 ⊢ (𝑆 ∈ ∪ ran sigAlgebra → (sigaGen‘𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4854 ran crn 5612 ‘cfv 6476 sigAlgebracsiga 34113 sigaGencsigagen 34143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-fv 6484 df-siga 34114 df-sigagen 34144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |