Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenid Structured version   Visualization version   GIF version

Theorem sigagenid 34141
Description: The sigma-algebra generated by a sigma-algebra is itself. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Assertion
Ref Expression
sigagenid (𝑆 ran sigAlgebra → (sigaGen‘𝑆) = 𝑆)

Proof of Theorem sigagenid
StepHypRef Expression
1 sgon 34114 . . 3 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
2 ssid 3969 . . 3 𝑆𝑆
3 sigagenss 34139 . . 3 ((𝑆 ∈ (sigAlgebra‘ 𝑆) ∧ 𝑆𝑆) → (sigaGen‘𝑆) ⊆ 𝑆)
41, 2, 3sylancl 586 . 2 (𝑆 ran sigAlgebra → (sigaGen‘𝑆) ⊆ 𝑆)
5 sssigagen 34135 . 2 (𝑆 ran sigAlgebra → 𝑆 ⊆ (sigaGen‘𝑆))
64, 5eqssd 3964 1 (𝑆 ran sigAlgebra → (sigaGen‘𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914   cuni 4871  ran crn 5639  cfv 6511  sigAlgebracsiga 34098  sigaGencsigagen 34128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-siga 34099  df-sigagen 34129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator