![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrisc | Structured version Visualization version GIF version |
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
isrisc.1 | ⊢ 𝑅 ∈ V |
isrisc.2 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
isrisc | ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrisc.1 | . 2 ⊢ 𝑅 ∈ V | |
2 | isrisc.2 | . 2 ⊢ 𝑆 ∈ V | |
3 | isriscg 37970 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 (class class class)co 7430 RingOpscrngo 37880 RingOpsIso crngoiso 37947 ≃𝑟 crisc 37948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-iota 6515 df-fv 6570 df-ov 7433 df-risc 37969 |
This theorem is referenced by: riscer 37974 |
Copyright terms: Public domain | W3C validator |