| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrisc | Structured version Visualization version GIF version | ||
| Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| isrisc.1 | ⊢ 𝑅 ∈ V |
| isrisc.2 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| isrisc | ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrisc.1 | . 2 ⊢ 𝑅 ∈ V | |
| 2 | isrisc.2 | . 2 ⊢ 𝑆 ∈ V | |
| 3 | isriscg 38023 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 (class class class)co 7346 RingOpscrngo 37933 RingOpsIso crngoiso 38000 ≃𝑟 crisc 38001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-iota 6437 df-fv 6489 df-ov 7349 df-risc 38022 |
| This theorem is referenced by: riscer 38027 |
| Copyright terms: Public domain | W3C validator |