| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrisc | Structured version Visualization version GIF version | ||
| Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| isrisc.1 | ⊢ 𝑅 ∈ V |
| isrisc.2 | ⊢ 𝑆 ∈ V |
| Ref | Expression |
|---|---|
| isrisc | ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrisc.1 | . 2 ⊢ 𝑅 ∈ V | |
| 2 | isrisc.2 | . 2 ⊢ 𝑆 ∈ V | |
| 3 | isriscg 37985 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 (class class class)co 7390 RingOpscrngo 37895 RingOpsIso crngoiso 37962 ≃𝑟 crisc 37963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-iota 6467 df-fv 6522 df-ov 7393 df-risc 37984 |
| This theorem is referenced by: riscer 37989 |
| Copyright terms: Public domain | W3C validator |