Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrisc Structured version   Visualization version   GIF version

Theorem isrisc 37986
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
isrisc.1 𝑅 ∈ V
isrisc.2 𝑆 ∈ V
Assertion
Ref Expression
isrisc (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓

Proof of Theorem isrisc
StepHypRef Expression
1 isrisc.1 . 2 𝑅 ∈ V
2 isrisc.2 . 2 𝑆 ∈ V
3 isriscg 37985 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
41, 2, 3mp2an 692 1 (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3450   class class class wbr 5110  (class class class)co 7390  RingOpscrngo 37895   RingOpsIso crngoiso 37962  𝑟 crisc 37963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-iota 6467  df-fv 6522  df-ov 7393  df-risc 37984
This theorem is referenced by:  riscer  37989
  Copyright terms: Public domain W3C validator