Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrisc | Structured version Visualization version GIF version |
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
isrisc.1 | ⊢ 𝑅 ∈ V |
isrisc.2 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
isrisc | ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrisc.1 | . 2 ⊢ 𝑅 ∈ V | |
2 | isrisc.2 | . 2 ⊢ 𝑆 ∈ V | |
3 | isriscg 36247 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1780 ∈ wcel 2105 Vcvv 3441 class class class wbr 5092 (class class class)co 7337 RingOpscrngo 36157 RngIso crngiso 36224 ≃𝑟 crisc 36225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-iota 6431 df-fv 6487 df-ov 7340 df-risc 36246 |
This theorem is referenced by: riscer 36251 |
Copyright terms: Public domain | W3C validator |