Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrisc Structured version   Visualization version   GIF version

Theorem isrisc 36248
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
isrisc.1 𝑅 ∈ V
isrisc.2 𝑆 ∈ V
Assertion
Ref Expression
isrisc (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓

Proof of Theorem isrisc
StepHypRef Expression
1 isrisc.1 . 2 𝑅 ∈ V
2 isrisc.2 . 2 𝑆 ∈ V
3 isriscg 36247 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆))))
41, 2, 3mp2an 689 1 (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RngIso 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1780  wcel 2105  Vcvv 3441   class class class wbr 5092  (class class class)co 7337  RingOpscrngo 36157   RngIso crngiso 36224  𝑟 crisc 36225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-iota 6431  df-fv 6487  df-ov 7340  df-risc 36246
This theorem is referenced by:  riscer  36251
  Copyright terms: Public domain W3C validator