Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrisc Structured version   Visualization version   GIF version

Theorem isrisc 37955
Description: The ring isomorphism relation. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
isrisc.1 𝑅 ∈ V
isrisc.2 𝑆 ∈ V
Assertion
Ref Expression
isrisc (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
Distinct variable groups:   𝑅,𝑓   𝑆,𝑓

Proof of Theorem isrisc
StepHypRef Expression
1 isrisc.1 . 2 𝑅 ∈ V
2 isrisc.2 . 2 𝑆 ∈ V
3 isriscg 37954 . 2 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆))))
41, 2, 3mp2an 692 1 (𝑅𝑟 𝑆 ↔ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingOpsIso 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2108  Vcvv 3459   class class class wbr 5119  (class class class)co 7403  RingOpscrngo 37864   RingOpsIso crngoiso 37931  𝑟 crisc 37932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-iota 6483  df-fv 6538  df-ov 7406  df-risc 37953
This theorem is referenced by:  riscer  37958
  Copyright terms: Public domain W3C validator