![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brssrres | Structured version Visualization version GIF version |
Description: Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
Ref | Expression |
---|---|
brssrres | ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brresALTV 34373 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 S 𝐶))) | |
2 | brssr 34591 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐵 S 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
3 | 2 | anbi2d 614 | . 2 ⊢ (𝐶 ∈ 𝑉 → ((𝐵 ∈ 𝐴 ∧ 𝐵 S 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
4 | 1, 3 | bitrd 268 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2145 ⊆ wss 3723 class class class wbr 4787 ↾ cres 5252 S cssr 34316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-br 4788 df-opab 4848 df-xp 5256 df-rel 5257 df-res 5262 df-ssr 34588 |
This theorem is referenced by: br1cnvssrres 34595 |
Copyright terms: Public domain | W3C validator |