| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brssrres | Structured version Visualization version GIF version | ||
| Description: Restricted subset binary relation. (Contributed by Peter Mazsa, 25-Nov-2019.) |
| Ref | Expression |
|---|---|
| brssrres | ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres 5960 | . 2 ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 S 𝐶))) | |
| 2 | brssr 38499 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐵 S 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
| 3 | 2 | anbi2d 630 | . 2 ⊢ (𝐶 ∈ 𝑉 → ((𝐵 ∈ 𝐴 ∧ 𝐵 S 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
| 4 | 1, 3 | bitrd 279 | 1 ⊢ (𝐶 ∈ 𝑉 → (𝐵( S ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 ↾ cres 5643 S cssr 38179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-res 5653 df-ssr 38496 |
| This theorem is referenced by: br1cnvssrres 38503 |
| Copyright terms: Public domain | W3C validator |