![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgvallem | Structured version Visualization version GIF version |
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
itgvallem.1 | ā¢ (iāš¾) = š |
Ref | Expression |
---|---|
itgvallem | ā¢ (š = š¾ ā (ā«2ā(š„ ā ā ā¦ if((š„ ā š“ ā§ 0 ā¤ (āā(šµ / (iāš)))), (āā(šµ / (iāš))), 0))) = (ā«2ā(š„ ā ā ā¦ if((š„ ā š“ ā§ 0 ā¤ (āā(šµ / š))), (āā(šµ / š)), 0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7416 | . . . . . . . . 9 ā¢ (š = š¾ ā (iāš) = (iāš¾)) | |
2 | itgvallem.1 | . . . . . . . . 9 ā¢ (iāš¾) = š | |
3 | 1, 2 | eqtrdi 2788 | . . . . . . . 8 ā¢ (š = š¾ ā (iāš) = š) |
4 | 3 | oveq2d 7424 | . . . . . . 7 ā¢ (š = š¾ ā (šµ / (iāš)) = (šµ / š)) |
5 | 4 | fveq2d 6895 | . . . . . 6 ā¢ (š = š¾ ā (āā(šµ / (iāš))) = (āā(šµ / š))) |
6 | 5 | breq2d 5160 | . . . . 5 ā¢ (š = š¾ ā (0 ā¤ (āā(šµ / (iāš))) ā 0 ā¤ (āā(šµ / š)))) |
7 | 6 | anbi2d 629 | . . . 4 ā¢ (š = š¾ ā ((š„ ā š“ ā§ 0 ā¤ (āā(šµ / (iāš)))) ā (š„ ā š“ ā§ 0 ā¤ (āā(šµ / š))))) |
8 | 7, 5 | ifbieq1d 4552 | . . 3 ā¢ (š = š¾ ā if((š„ ā š“ ā§ 0 ā¤ (āā(šµ / (iāš)))), (āā(šµ / (iāš))), 0) = if((š„ ā š“ ā§ 0 ā¤ (āā(šµ / š))), (āā(šµ / š)), 0)) |
9 | 8 | mpteq2dv 5250 | . 2 ā¢ (š = š¾ ā (š„ ā ā ā¦ if((š„ ā š“ ā§ 0 ā¤ (āā(šµ / (iāš)))), (āā(šµ / (iāš))), 0)) = (š„ ā ā ā¦ if((š„ ā š“ ā§ 0 ā¤ (āā(šµ / š))), (āā(šµ / š)), 0))) |
10 | 9 | fveq2d 6895 | 1 ā¢ (š = š¾ ā (ā«2ā(š„ ā ā ā¦ if((š„ ā š“ ā§ 0 ā¤ (āā(šµ / (iāš)))), (āā(šµ / (iāš))), 0))) = (ā«2ā(š„ ā ā ā¦ if((š„ ā š“ ā§ 0 ā¤ (āā(šµ / š))), (āā(šµ / š)), 0)))) |
Colors of variables: wff setvar class |
Syntax hints: ā wi 4 ā§ wa 396 = wceq 1541 ā wcel 2106 ifcif 4528 class class class wbr 5148 ā¦ cmpt 5231 ācfv 6543 (class class class)co 7408 ācr 11108 0cc0 11109 ici 11111 ā¤ cle 11248 / cdiv 11870 ācexp 14026 ācre 15043 ā«2citg2 25132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: iblcnlem1 25304 itgcnlem 25306 |
Copyright terms: Public domain | W3C validator |