MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgvallem Structured version   Visualization version   GIF version

Theorem itgvallem 25756
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
itgvallem.1 (i↑𝐾) = 𝑇
Assertion
Ref Expression
itgvallem (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))))
Distinct variable groups:   𝑥,𝑘   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝑇(𝑥,𝑘)   𝐾(𝑘)

Proof of Theorem itgvallem
StepHypRef Expression
1 oveq2 7421 . . . . . . . . 9 (𝑘 = 𝐾 → (i↑𝑘) = (i↑𝐾))
2 itgvallem.1 . . . . . . . . 9 (i↑𝐾) = 𝑇
31, 2eqtrdi 2785 . . . . . . . 8 (𝑘 = 𝐾 → (i↑𝑘) = 𝑇)
43oveq2d 7429 . . . . . . 7 (𝑘 = 𝐾 → (𝐵 / (i↑𝑘)) = (𝐵 / 𝑇))
54fveq2d 6890 . . . . . 6 (𝑘 = 𝐾 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / 𝑇)))
65breq2d 5135 . . . . 5 (𝑘 = 𝐾 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / 𝑇))))
76anbi2d 630 . . . 4 (𝑘 = 𝐾 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇)))))
87, 5ifbieq1d 4530 . . 3 (𝑘 = 𝐾 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))
98mpteq2dv 5224 . 2 (𝑘 = 𝐾 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))
109fveq2d 6890 1 (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  ifcif 4505   class class class wbr 5123  cmpt 5205  cfv 6541  (class class class)co 7413  cr 11136  0cc0 11137  ici 11139  cle 11278   / cdiv 11902  cexp 14084  cre 15118  2citg2 25587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-iota 6494  df-fv 6549  df-ov 7416
This theorem is referenced by:  iblcnlem1  25759  itgcnlem  25761
  Copyright terms: Public domain W3C validator