MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgvallem Structured version   Visualization version   GIF version

Theorem itgvallem 25714
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
itgvallem.1 (i↑𝐾) = 𝑇
Assertion
Ref Expression
itgvallem (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))))
Distinct variable groups:   𝑥,𝑘   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝑇(𝑥,𝑘)   𝐾(𝑘)

Proof of Theorem itgvallem
StepHypRef Expression
1 oveq2 7360 . . . . . . . . 9 (𝑘 = 𝐾 → (i↑𝑘) = (i↑𝐾))
2 itgvallem.1 . . . . . . . . 9 (i↑𝐾) = 𝑇
31, 2eqtrdi 2784 . . . . . . . 8 (𝑘 = 𝐾 → (i↑𝑘) = 𝑇)
43oveq2d 7368 . . . . . . 7 (𝑘 = 𝐾 → (𝐵 / (i↑𝑘)) = (𝐵 / 𝑇))
54fveq2d 6832 . . . . . 6 (𝑘 = 𝐾 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / 𝑇)))
65breq2d 5105 . . . . 5 (𝑘 = 𝐾 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / 𝑇))))
76anbi2d 630 . . . 4 (𝑘 = 𝐾 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇)))))
87, 5ifbieq1d 4499 . . 3 (𝑘 = 𝐾 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))
98mpteq2dv 5187 . 2 (𝑘 = 𝐾 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))
109fveq2d 6832 1 (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ifcif 4474   class class class wbr 5093  cmpt 5174  cfv 6486  (class class class)co 7352  cr 11012  0cc0 11013  ici 11015  cle 11154   / cdiv 11781  cexp 13970  cre 15006  2citg2 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-iota 6442  df-fv 6494  df-ov 7355
This theorem is referenced by:  iblcnlem1  25717  itgcnlem  25719
  Copyright terms: Public domain W3C validator