![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgvallem | Structured version Visualization version GIF version |
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
itgvallem.1 | ⊢ (i↑𝐾) = 𝑇 |
Ref | Expression |
---|---|
itgvallem | ⊢ (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7446 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (i↑𝑘) = (i↑𝐾)) | |
2 | itgvallem.1 | . . . . . . . . 9 ⊢ (i↑𝐾) = 𝑇 | |
3 | 1, 2 | eqtrdi 2793 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → (i↑𝑘) = 𝑇) |
4 | 3 | oveq2d 7454 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝐵 / (i↑𝑘)) = (𝐵 / 𝑇)) |
5 | 4 | fveq2d 6918 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / 𝑇))) |
6 | 5 | breq2d 5163 | . . . . 5 ⊢ (𝑘 = 𝐾 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / 𝑇)))) |
7 | 6 | anbi2d 630 | . . . 4 ⊢ (𝑘 = 𝐾 → ((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))))) |
8 | 7, 5 | ifbieq1d 4558 | . . 3 ⊢ (𝑘 = 𝐾 → if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)) |
9 | 8 | mpteq2dv 5253 | . 2 ⊢ (𝑘 = 𝐾 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))) |
10 | 9 | fveq2d 6918 | 1 ⊢ (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4534 class class class wbr 5151 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 ℝcr 11161 0cc0 11162 ici 11164 ≤ cle 11303 / cdiv 11927 ↑cexp 14108 ℜcre 15142 ∫2citg2 25676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-iota 6522 df-fv 6577 df-ov 7441 |
This theorem is referenced by: iblcnlem1 25849 itgcnlem 25851 |
Copyright terms: Public domain | W3C validator |