MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgvallem Structured version   Visualization version   GIF version

Theorem itgvallem 25840
Description: Substitution lemma. (Contributed by Mario Carneiro, 7-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypothesis
Ref Expression
itgvallem.1 (i↑𝐾) = 𝑇
Assertion
Ref Expression
itgvallem (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))))
Distinct variable groups:   𝑥,𝑘   𝑥,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)   𝑇(𝑥,𝑘)   𝐾(𝑘)

Proof of Theorem itgvallem
StepHypRef Expression
1 oveq2 7456 . . . . . . . . 9 (𝑘 = 𝐾 → (i↑𝑘) = (i↑𝐾))
2 itgvallem.1 . . . . . . . . 9 (i↑𝐾) = 𝑇
31, 2eqtrdi 2796 . . . . . . . 8 (𝑘 = 𝐾 → (i↑𝑘) = 𝑇)
43oveq2d 7464 . . . . . . 7 (𝑘 = 𝐾 → (𝐵 / (i↑𝑘)) = (𝐵 / 𝑇))
54fveq2d 6924 . . . . . 6 (𝑘 = 𝐾 → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / 𝑇)))
65breq2d 5178 . . . . 5 (𝑘 = 𝐾 → (0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) ↔ 0 ≤ (ℜ‘(𝐵 / 𝑇))))
76anbi2d 629 . . . 4 (𝑘 = 𝐾 → ((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) ↔ (𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇)))))
87, 5ifbieq1d 4572 . . 3 (𝑘 = 𝐾 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))
98mpteq2dv 5268 . 2 (𝑘 = 𝐾 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0)))
109fveq2d 6924 1 (𝑘 = 𝐾 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 𝑇))), (ℜ‘(𝐵 / 𝑇)), 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  ici 11186  cle 11325   / cdiv 11947  cexp 14112  cre 15146  2citg2 25670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  iblcnlem1  25843  itgcnlem  25845
  Copyright terms: Public domain W3C validator