![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgcl | Structured version Visualization version GIF version |
Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.) |
Ref | Expression |
---|---|
itgmpt.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
itgcl.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
Ref | Expression |
---|---|
itgcl | ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))) | |
2 | 1 | dfitg 25818 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
3 | fzfid 14010 | . . 3 ⊢ (𝜑 → (0...3) ∈ Fin) | |
4 | ax-icn 11211 | . . . . 5 ⊢ i ∈ ℂ | |
5 | elfznn0 13656 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑘 ∈ ℕ0) |
7 | expcl 14116 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
8 | 4, 6, 7 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ∈ ℂ) |
9 | elfzelz 13560 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
10 | eqidd 2735 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) | |
11 | eqidd 2735 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))) | |
12 | itgcl.2 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
13 | itgmpt.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
14 | 10, 11, 12, 13 | iblitg 25817 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) |
15 | 9, 14 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) |
16 | 15 | recnd 11286 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ) |
17 | 8, 16 | mulcld 11278 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ) |
18 | 3, 17 | fsumcl 15765 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ) |
19 | 2, 18 | eqeltrid 2842 | 1 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ifcif 4530 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 ici 11154 · cmul 11157 ≤ cle 11293 / cdiv 11917 3c3 12319 ℕ0cn0 12523 ℤcz 12610 ...cfz 13543 ↑cexp 14098 ℜcre 15132 Σcsu 15718 ∫2citg2 25664 𝐿1cibl 25665 ∫citg 25666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-sum 15719 df-ibl 25670 df-itg 25671 |
This theorem is referenced by: itgneg 25853 itgaddlem2 25873 itgadd 25874 itgsub 25875 itgfsum 25876 itgmulc2lem2 25882 itgmulc2 25883 itgabs 25884 itgsplitioo 25887 ditgcl 25907 ditgswap 25908 ftc1lem1 26090 ftc1lem2 26091 ftc1a 26092 ftc1lem4 26094 ftc2 26099 itgparts 26102 itgsubstlem 26103 itgpowd 26105 itgulm 26465 itgaddnclem2 37665 itgaddnc 37666 itgsubnc 37668 itgmulc2nclem2 37673 itgmulc2nc 37674 itgabsnc 37675 ftc1cnnclem 37677 ftc1anc 37687 ftc2nc 37688 lcmineqlem10 42019 itgsinexplem1 45909 itgsinexp 45910 itgspltprt 45934 fourierdlem30 46092 fourierdlem47 46108 fourierdlem73 46134 fourierdlem83 46144 fourierdlem87 46148 fourierdlem95 46156 fourierdlem103 46164 fourierdlem104 46165 fourierdlem107 46168 fourierdlem112 46173 sqwvfoura 46183 etransclem23 46212 |
Copyright terms: Public domain | W3C validator |