MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcl Structured version   Visualization version   GIF version

Theorem itgcl 25657
Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypotheses
Ref Expression
itgmpt.1 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ ๐‘‰)
itgcl.2 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ ๐ฟ1)
Assertion
Ref Expression
itgcl (๐œ‘ โ†’ โˆซ๐ด๐ต d๐‘ฅ โˆˆ โ„‚)
Distinct variable groups:   ๐‘ฅ,๐ด   ๐œ‘,๐‘ฅ   ๐‘ฅ,๐‘‰
Allowed substitution hint:   ๐ต(๐‘ฅ)

Proof of Theorem itgcl
Dummy variable ๐‘˜ is distinct from all other variables.
StepHypRef Expression
1 eqid 2724 . . 3 (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))
21dfitg 25643 . 2 โˆซ๐ด๐ต d๐‘ฅ = ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0))))
3 fzfid 13939 . . 3 (๐œ‘ โ†’ (0...3) โˆˆ Fin)
4 ax-icn 11166 . . . . 5 i โˆˆ โ„‚
5 elfznn0 13595 . . . . . 6 (๐‘˜ โˆˆ (0...3) โ†’ ๐‘˜ โˆˆ โ„•0)
65adantl 481 . . . . 5 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ ๐‘˜ โˆˆ โ„•0)
7 expcl 14046 . . . . 5 ((i โˆˆ โ„‚ โˆง ๐‘˜ โˆˆ โ„•0) โ†’ (iโ†‘๐‘˜) โˆˆ โ„‚)
84, 6, 7sylancr 586 . . . 4 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ (iโ†‘๐‘˜) โˆˆ โ„‚)
9 elfzelz 13502 . . . . . 6 (๐‘˜ โˆˆ (0...3) โ†’ ๐‘˜ โˆˆ โ„ค)
10 eqidd 2725 . . . . . . 7 (๐œ‘ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0)))
11 eqidd 2725 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))) = (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))))
12 itgcl.2 . . . . . . 7 (๐œ‘ โ†’ (๐‘ฅ โˆˆ ๐ด โ†ฆ ๐ต) โˆˆ ๐ฟ1)
13 itgmpt.1 . . . . . . 7 ((๐œ‘ โˆง ๐‘ฅ โˆˆ ๐ด) โ†’ ๐ต โˆˆ ๐‘‰)
1410, 11, 12, 13iblitg 25642 . . . . . 6 ((๐œ‘ โˆง ๐‘˜ โˆˆ โ„ค) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0))) โˆˆ โ„)
159, 14sylan2 592 . . . . 5 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0))) โˆˆ โ„)
1615recnd 11241 . . . 4 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0))) โˆˆ โ„‚)
178, 16mulcld 11233 . . 3 ((๐œ‘ โˆง ๐‘˜ โˆˆ (0...3)) โ†’ ((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0)))) โˆˆ โ„‚)
183, 17fsumcl 15681 . 2 (๐œ‘ โ†’ ฮฃ๐‘˜ โˆˆ (0...3)((iโ†‘๐‘˜) ยท (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if((๐‘ฅ โˆˆ ๐ด โˆง 0 โ‰ค (โ„œโ€˜(๐ต / (iโ†‘๐‘˜)))), (โ„œโ€˜(๐ต / (iโ†‘๐‘˜))), 0)))) โˆˆ โ„‚)
192, 18eqeltrid 2829 1 (๐œ‘ โ†’ โˆซ๐ด๐ต d๐‘ฅ โˆˆ โ„‚)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   โˆˆ wcel 2098  ifcif 4521   class class class wbr 5139   โ†ฆ cmpt 5222  โ€˜cfv 6534  (class class class)co 7402  โ„‚cc 11105  โ„cr 11106  0cc0 11107  ici 11109   ยท cmul 11112   โ‰ค cle 11248   / cdiv 11870  3c3 12267  โ„•0cn0 12471  โ„คcz 12557  ...cfz 13485  โ†‘cexp 14028  โ„œcre 15046  ฮฃcsu 15634  โˆซ2citg2 25489  ๐ฟ1cibl 25490  โˆซcitg 25491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12976  df-fz 13486  df-fzo 13629  df-fl 13758  df-mod 13836  df-seq 13968  df-exp 14029  df-hash 14292  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-ibl 25495  df-itg 25496
This theorem is referenced by:  itgneg  25677  itgaddlem2  25697  itgadd  25698  itgsub  25699  itgfsum  25700  itgmulc2lem2  25706  itgmulc2  25707  itgabs  25708  itgsplitioo  25711  ditgcl  25731  ditgswap  25732  ftc1lem1  25914  ftc1lem2  25915  ftc1a  25916  ftc1lem4  25918  ftc2  25923  itgparts  25926  itgsubstlem  25927  itgpowd  25929  itgulm  26285  itgaddnclem2  37051  itgaddnc  37052  itgsubnc  37054  itgmulc2nclem2  37059  itgmulc2nc  37060  itgabsnc  37061  ftc1cnnclem  37063  ftc1anc  37073  ftc2nc  37074  lcmineqlem10  41410  itgsinexplem1  45216  itgsinexp  45217  itgspltprt  45241  fourierdlem30  45399  fourierdlem47  45415  fourierdlem73  45441  fourierdlem83  45451  fourierdlem87  45455  fourierdlem95  45463  fourierdlem103  45471  fourierdlem104  45472  fourierdlem107  45475  fourierdlem112  45480  sqwvfoura  45490  etransclem23  45519
  Copyright terms: Public domain W3C validator