![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgcl | Structured version Visualization version GIF version |
Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.) |
Ref | Expression |
---|---|
itgmpt.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
itgcl.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
Ref | Expression |
---|---|
itgcl | ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))) | |
2 | 1 | dfitg 23749 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
3 | fzfid 12973 | . . 3 ⊢ (𝜑 → (0...3) ∈ Fin) | |
4 | ax-icn 10195 | . . . . 5 ⊢ i ∈ ℂ | |
5 | elfznn0 12633 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
6 | 5 | adantl 467 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑘 ∈ ℕ0) |
7 | expcl 13078 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
8 | 4, 6, 7 | sylancr 575 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ∈ ℂ) |
9 | elfzelz 12542 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
10 | eqidd 2772 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) | |
11 | eqidd 2772 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))) | |
12 | itgcl.2 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
13 | itgmpt.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
14 | 10, 11, 12, 13 | iblitg 23748 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) |
15 | 9, 14 | sylan2 580 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) |
16 | 15 | recnd 10268 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ) |
17 | 8, 16 | mulcld 10260 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ) |
18 | 3, 17 | fsumcl 14665 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ) |
19 | 2, 18 | syl5eqel 2854 | 1 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ifcif 4225 class class class wbr 4786 ↦ cmpt 4863 ‘cfv 6029 (class class class)co 6791 ℂcc 10134 ℝcr 10135 0cc0 10136 ici 10138 · cmul 10141 ≤ cle 10275 / cdiv 10884 3c3 11271 ℕ0cn0 11492 ℤcz 11577 ...cfz 12526 ↑cexp 13060 ℜcre 14038 Σcsu 14617 ∫2citg2 23597 𝐿1cibl 23598 ∫citg 23599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7094 ax-inf2 8700 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 ax-pre-sup 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5821 df-ord 5867 df-on 5868 df-lim 5869 df-suc 5870 df-iota 5992 df-fun 6031 df-fn 6032 df-f 6033 df-f1 6034 df-fo 6035 df-f1o 6036 df-fv 6037 df-isom 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-sup 8502 df-inf 8503 df-oi 8569 df-card 8963 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-div 10885 df-nn 11221 df-2 11279 df-3 11280 df-4 11281 df-n0 11493 df-z 11578 df-uz 11887 df-rp 12029 df-fz 12527 df-fzo 12667 df-fl 12794 df-mod 12870 df-seq 13002 df-exp 13061 df-hash 13315 df-cj 14040 df-re 14041 df-im 14042 df-sqrt 14176 df-abs 14177 df-clim 14420 df-sum 14618 df-ibl 23603 df-itg 23604 |
This theorem is referenced by: itgneg 23783 itgaddlem2 23803 itgadd 23804 itgsub 23805 itgfsum 23806 itgmulc2lem2 23812 itgmulc2 23813 itgabs 23814 itgsplitioo 23817 ditgcl 23835 ditgswap 23836 ftc1lem1 24011 ftc1lem2 24012 ftc1a 24013 ftc1lem4 24015 ftc2 24020 itgparts 24023 itgsubstlem 24024 itgulm 24375 itgaddnclem2 33794 itgaddnc 33795 itgsubnc 33797 itgmulc2nclem2 33802 itgmulc2nc 33803 itgabsnc 33804 ftc1cnnclem 33808 ftc1anc 33818 ftc2nc 33819 itgpowd 38319 itgsinexplem1 40680 itgsinexp 40681 itgspltprt 40705 fourierdlem30 40864 fourierdlem47 40880 fourierdlem73 40906 fourierdlem83 40916 fourierdlem87 40920 fourierdlem95 40928 fourierdlem103 40936 fourierdlem104 40937 fourierdlem107 40940 fourierdlem112 40945 sqwvfoura 40955 etransclem23 40984 |
Copyright terms: Public domain | W3C validator |