MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcl Structured version   Visualization version   GIF version

Theorem itgcl 25819
Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypotheses
Ref Expression
itgmpt.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcl.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcl (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 25804 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 fzfid 14014 . . 3 (𝜑 → (0...3) ∈ Fin)
4 ax-icn 11214 . . . . 5 i ∈ ℂ
5 elfznn0 13660 . . . . . 6 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
65adantl 481 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝑘 ∈ ℕ0)
7 expcl 14120 . . . . 5 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
84, 6, 7sylancr 587 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (i↑𝑘) ∈ ℂ)
9 elfzelz 13564 . . . . . 6 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
10 eqidd 2738 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
11 eqidd 2738 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
12 itgcl.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
13 itgmpt.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
1410, 11, 12, 13iblitg 25803 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
159, 14sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
1615recnd 11289 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
178, 16mulcld 11281 . . 3 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
183, 17fsumcl 15769 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
192, 18eqeltrid 2845 1 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ifcif 4525   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  ici 11157   · cmul 11160  cle 11296   / cdiv 11920  3c3 12322  0cn0 12526  cz 12613  ...cfz 13547  cexp 14102  cre 15136  Σcsu 15722  2citg2 25651  𝐿1cibl 25652  citg 25653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-ibl 25657  df-itg 25658
This theorem is referenced by:  itgneg  25839  itgaddlem2  25859  itgadd  25860  itgsub  25861  itgfsum  25862  itgmulc2lem2  25868  itgmulc2  25869  itgabs  25870  itgsplitioo  25873  ditgcl  25893  ditgswap  25894  ftc1lem1  26076  ftc1lem2  26077  ftc1a  26078  ftc1lem4  26080  ftc2  26085  itgparts  26088  itgsubstlem  26089  itgpowd  26091  itgulm  26451  itgaddnclem2  37686  itgaddnc  37687  itgsubnc  37689  itgmulc2nclem2  37694  itgmulc2nc  37695  itgabsnc  37696  ftc1cnnclem  37698  ftc1anc  37708  ftc2nc  37709  lcmineqlem10  42039  itgsinexplem1  45969  itgsinexp  45970  itgspltprt  45994  fourierdlem30  46152  fourierdlem47  46168  fourierdlem73  46194  fourierdlem83  46204  fourierdlem87  46208  fourierdlem95  46216  fourierdlem103  46224  fourierdlem104  46225  fourierdlem107  46228  fourierdlem112  46233  sqwvfoura  46243  etransclem23  46272
  Copyright terms: Public domain W3C validator