MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcl Structured version   Visualization version   GIF version

Theorem itgcl 23987
Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypotheses
Ref Expression
itgmpt.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcl.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcl (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 23973 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 fzfid 13091 . . 3 (𝜑 → (0...3) ∈ Fin)
4 ax-icn 10331 . . . . 5 i ∈ ℂ
5 elfznn0 12751 . . . . . 6 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
65adantl 475 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝑘 ∈ ℕ0)
7 expcl 13196 . . . . 5 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
84, 6, 7sylancr 581 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (i↑𝑘) ∈ ℂ)
9 elfzelz 12659 . . . . . 6 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
10 eqidd 2779 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
11 eqidd 2779 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
12 itgcl.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
13 itgmpt.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
1410, 11, 12, 13iblitg 23972 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
159, 14sylan2 586 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
1615recnd 10405 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
178, 16mulcld 10397 . . 3 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
183, 17fsumcl 14871 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
192, 18syl5eqel 2863 1 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107  ifcif 4307   class class class wbr 4886  cmpt 4965  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  ici 10274   · cmul 10277  cle 10412   / cdiv 11032  3c3 11431  0cn0 11642  cz 11728  ...cfz 12643  cexp 13178  cre 14244  Σcsu 14824  2citg2 23820  𝐿1cibl 23821  citg 23822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-ibl 23826  df-itg 23827
This theorem is referenced by:  itgneg  24007  itgaddlem2  24027  itgadd  24028  itgsub  24029  itgfsum  24030  itgmulc2lem2  24036  itgmulc2  24037  itgabs  24038  itgsplitioo  24041  ditgcl  24059  ditgswap  24060  ftc1lem1  24235  ftc1lem2  24236  ftc1a  24237  ftc1lem4  24239  ftc2  24244  itgparts  24247  itgsubstlem  24248  itgulm  24599  itgaddnclem2  34096  itgaddnc  34097  itgsubnc  34099  itgmulc2nclem2  34104  itgmulc2nc  34105  itgabsnc  34106  ftc1cnnclem  34110  ftc1anc  34120  ftc2nc  34121  itgpowd  38762  itgsinexplem1  41101  itgsinexp  41102  itgspltprt  41126  fourierdlem30  41285  fourierdlem47  41301  fourierdlem73  41327  fourierdlem83  41337  fourierdlem87  41341  fourierdlem95  41349  fourierdlem103  41357  fourierdlem104  41358  fourierdlem107  41361  fourierdlem112  41366  sqwvfoura  41376  etransclem23  41405
  Copyright terms: Public domain W3C validator