| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itgcl | Structured version Visualization version GIF version | ||
| Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.) |
| Ref | Expression |
|---|---|
| itgmpt.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| itgcl.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
| Ref | Expression |
|---|---|
| itgcl | ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))) | |
| 2 | 1 | dfitg 25677 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
| 3 | fzfid 13945 | . . 3 ⊢ (𝜑 → (0...3) ∈ Fin) | |
| 4 | ax-icn 11134 | . . . . 5 ⊢ i ∈ ℂ | |
| 5 | elfznn0 13588 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0) | |
| 6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → 𝑘 ∈ ℕ0) |
| 7 | expcl 14051 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ) | |
| 8 | 4, 6, 7 | sylancr 587 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (i↑𝑘) ∈ ℂ) |
| 9 | elfzelz 13492 | . . . . . 6 ⊢ (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ) | |
| 10 | eqidd 2731 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) | |
| 11 | eqidd 2731 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))) | |
| 12 | itgcl.2 | . . . . . . 7 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
| 13 | itgmpt.1 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 14 | 10, 11, 12, 13 | iblitg 25676 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) |
| 15 | 9, 14 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) |
| 16 | 15 | recnd 11209 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ) |
| 17 | 8, 16 | mulcld 11201 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ) |
| 18 | 3, 17 | fsumcl 15706 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ) |
| 19 | 2, 18 | eqeltrid 2833 | 1 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ifcif 4491 class class class wbr 5110 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 ici 11077 · cmul 11080 ≤ cle 11216 / cdiv 11842 3c3 12249 ℕ0cn0 12449 ℤcz 12536 ...cfz 13475 ↑cexp 14033 ℜcre 15070 Σcsu 15659 ∫2citg2 25524 𝐿1cibl 25525 ∫citg 25526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-ibl 25530 df-itg 25531 |
| This theorem is referenced by: itgneg 25712 itgaddlem2 25732 itgadd 25733 itgsub 25734 itgfsum 25735 itgmulc2lem2 25741 itgmulc2 25742 itgabs 25743 itgsplitioo 25746 ditgcl 25766 ditgswap 25767 ftc1lem1 25949 ftc1lem2 25950 ftc1a 25951 ftc1lem4 25953 ftc2 25958 itgparts 25961 itgsubstlem 25962 itgpowd 25964 itgulm 26324 itgaddnclem2 37680 itgaddnc 37681 itgsubnc 37683 itgmulc2nclem2 37688 itgmulc2nc 37689 itgabsnc 37690 ftc1cnnclem 37692 ftc1anc 37702 ftc2nc 37703 lcmineqlem10 42033 itgsinexplem1 45959 itgsinexp 45960 itgspltprt 45984 fourierdlem30 46142 fourierdlem47 46158 fourierdlem73 46184 fourierdlem83 46194 fourierdlem87 46198 fourierdlem95 46206 fourierdlem103 46214 fourierdlem104 46215 fourierdlem107 46218 fourierdlem112 46223 sqwvfoura 46233 etransclem23 46262 |
| Copyright terms: Public domain | W3C validator |