Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc Structured version   Visualization version   GIF version

Theorem imasubc 49140
Description: An image of a full functor is a full subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imasubc.f (𝜑𝐹(𝐷 Full 𝐸)𝐺)
imasubc.c 𝐶 = (Base‘𝐸)
imasubc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imasubc (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc
Dummy variables 𝑚 𝑛 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.f . . . 4 (𝜑𝐹(𝐷 Full 𝐸)𝐺)
2 relfull 17817 . . . . 5 Rel (𝐷 Full 𝐸)
32brrelex1i 5675 . . . 4 (𝐹(𝐷 Full 𝐸)𝐺𝐹 ∈ V)
41, 3syl 17 . . 3 (𝜑𝐹 ∈ V)
5 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
64, 4, 5imasubclem2 49094 . 2 (𝜑𝐾 Fn (𝑆 × 𝑆))
7 imasubc.s . . 3 𝑆 = (𝐹𝐴)
8 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
9 imasubc.c . . . . 5 𝐶 = (Base‘𝐸)
10 fullfunc 17815 . . . . . . 7 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1110ssbri 5137 . . . . . 6 (𝐹(𝐷 Full 𝐸)𝐺𝐹(𝐷 Func 𝐸)𝐺)
121, 11syl 17 . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
138, 9, 12funcf1 17773 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶𝐶)
1413fimassd 6673 . . 3 (𝜑 → (𝐹𝐴) ⊆ 𝐶)
157, 14eqsstrid 3974 . 2 (𝜑𝑆𝐶)
16 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1716, 7eleqtrdi 2838 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (𝐹𝐴))
18 inisegn0a 48824 . . . . . . . . . 10 (𝑧 ∈ (𝐹𝐴) → (𝐹 “ {𝑧}) ≠ ∅)
1917, 18syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑧}) ≠ ∅)
20 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2120, 7eleqtrdi 2838 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (𝐹𝐴))
22 inisegn0a 48824 . . . . . . . . . 10 (𝑤 ∈ (𝐹𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
2321, 22syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑤}) ≠ ∅)
2419, 23jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅))
25 xpnz 6108 . . . . . . . 8 (((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅) ↔ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2624, 25sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2713ffnd 6653 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn (Base‘𝐷))
2827ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
29 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
30 fniniseg 6994 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
3130biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3228, 29, 31syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3332simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
34 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
35 fniniseg 6994 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
3635biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3728, 34, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3837simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
3933, 38oveq12d 7367 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
40 eqid 2729 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
41 imasubc.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐷)
421ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Full 𝐸)𝐺)
4332simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
4437simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
458, 40, 41, 42, 43, 44fullfo 17821 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
46 foeq3 6734 . . . . . . . . . . . 12 (((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) ↔ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤)))
4746biimpa 476 . . . . . . . . . . 11 ((((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) ∧ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
4839, 45, 47syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
49 foima 6741 . . . . . . . . . 10 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5048, 49syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5150ralrimivva 3172 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
52 fveq2 6822 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
53 df-ov 7352 . . . . . . . . . . . 12 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
5452, 53eqtr4di 2782 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
55 fveq2 6822 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
56 df-ov 7352 . . . . . . . . . . . 12 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
5755, 56eqtr4di 2782 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
5854, 57imaeq12d 6012 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
5958eqeq1d 2731 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)))
6059ralxp 5784 . . . . . . . 8 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
6151, 60sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
62 iuneqconst2 48811 . . . . . . 7 ((((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅ ∧ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
6326, 61, 62syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
644adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
6564, 64, 16, 20, 5imasubclem3 49095 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
66 imasubc.j . . . . . . 7 𝐽 = (Homf𝐸)
6715adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆𝐶)
6867, 16sseldd 3936 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝐶)
6967, 20sseldd 3936 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝐶)
7066, 9, 40, 68, 69homfval 17598 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
7163, 65, 703eqtr4rd 2775 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
7271ralrimivva 3172 . . . 4 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
73 fveq2 6822 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
74 df-ov 7352 . . . . . . 7 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
7573, 74eqtr4di 2782 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
76 fveq2 6822 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
77 df-ov 7352 . . . . . . 7 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
7876, 77eqtr4di 2782 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
7975, 78eqeq12d 2745 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
8079ralxp 5784 . . . 4 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
8172, 80sylibr 234 . . 3 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
8266, 9homffn 17599 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
8382a1i 11 . . . 4 (𝜑𝐽 Fn (𝐶 × 𝐶))
84 xpss12 5634 . . . . 5 ((𝑆𝐶𝑆𝐶) → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
8515, 15, 84syl2anc 584 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
86 fvreseq1 6973 . . . 4 (((𝐽 Fn (𝐶 × 𝐶) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶)) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8783, 6, 85, 86syl21anc 837 . . 3 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8881, 87mpbird 257 . 2 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
896, 15, 883jca 1128 1 (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  wss 3903  c0 4284  {csn 4577  cop 4583   ciun 4941   class class class wbr 5092   × cxp 5617  ccnv 5618  cres 5621  cima 5622   Fn wfn 6477  ontowfo 6480  cfv 6482  (class class class)co 7349  cmpo 7351  Basecbs 17120  Hom chom 17172  Homf chomf 17572   Func cfunc 17761   Full cful 17811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-homf 17576  df-func 17765  df-full 17813
This theorem is referenced by:  imasubc2  49141  idfullsubc  49150
  Copyright terms: Public domain W3C validator