Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc Structured version   Visualization version   GIF version

Theorem imasubc 49130
Description: An image of a full functor is a full subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imasubc.f (𝜑𝐹(𝐷 Full 𝐸)𝐺)
imasubc.c 𝐶 = (Base‘𝐸)
imasubc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imasubc (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc
Dummy variables 𝑚 𝑛 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.f . . . 4 (𝜑𝐹(𝐷 Full 𝐸)𝐺)
2 relfull 17878 . . . . 5 Rel (𝐷 Full 𝐸)
32brrelex1i 5696 . . . 4 (𝐹(𝐷 Full 𝐸)𝐺𝐹 ∈ V)
41, 3syl 17 . . 3 (𝜑𝐹 ∈ V)
5 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
64, 4, 5imasubclem2 49084 . 2 (𝜑𝐾 Fn (𝑆 × 𝑆))
7 imasubc.s . . 3 𝑆 = (𝐹𝐴)
8 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
9 imasubc.c . . . . 5 𝐶 = (Base‘𝐸)
10 fullfunc 17876 . . . . . . 7 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1110ssbri 5154 . . . . . 6 (𝐹(𝐷 Full 𝐸)𝐺𝐹(𝐷 Func 𝐸)𝐺)
121, 11syl 17 . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
138, 9, 12funcf1 17834 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶𝐶)
1413fimassd 6711 . . 3 (𝜑 → (𝐹𝐴) ⊆ 𝐶)
157, 14eqsstrid 3987 . 2 (𝜑𝑆𝐶)
16 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1716, 7eleqtrdi 2839 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (𝐹𝐴))
18 inisegn0a 48814 . . . . . . . . . 10 (𝑧 ∈ (𝐹𝐴) → (𝐹 “ {𝑧}) ≠ ∅)
1917, 18syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑧}) ≠ ∅)
20 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2120, 7eleqtrdi 2839 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (𝐹𝐴))
22 inisegn0a 48814 . . . . . . . . . 10 (𝑤 ∈ (𝐹𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
2321, 22syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑤}) ≠ ∅)
2419, 23jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅))
25 xpnz 6134 . . . . . . . 8 (((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅) ↔ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2624, 25sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2713ffnd 6691 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn (Base‘𝐷))
2827ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
29 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
30 fniniseg 7034 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
3130biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3228, 29, 31syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3332simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
34 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
35 fniniseg 7034 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
3635biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3728, 34, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3837simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
3933, 38oveq12d 7407 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
40 eqid 2730 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
41 imasubc.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐷)
421ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Full 𝐸)𝐺)
4332simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
4437simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
458, 40, 41, 42, 43, 44fullfo 17882 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
46 foeq3 6772 . . . . . . . . . . . 12 (((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) ↔ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤)))
4746biimpa 476 . . . . . . . . . . 11 ((((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) ∧ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
4839, 45, 47syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
49 foima 6779 . . . . . . . . . 10 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5048, 49syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5150ralrimivva 3181 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
52 fveq2 6860 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
53 df-ov 7392 . . . . . . . . . . . 12 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
5452, 53eqtr4di 2783 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
55 fveq2 6860 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
56 df-ov 7392 . . . . . . . . . . . 12 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
5755, 56eqtr4di 2783 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
5854, 57imaeq12d 6034 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
5958eqeq1d 2732 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)))
6059ralxp 5807 . . . . . . . 8 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
6151, 60sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
62 iuneqconst2 48801 . . . . . . 7 ((((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅ ∧ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
6326, 61, 62syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
644adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
6564, 64, 16, 20, 5imasubclem3 49085 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
66 imasubc.j . . . . . . 7 𝐽 = (Homf𝐸)
6715adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆𝐶)
6867, 16sseldd 3949 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝐶)
6967, 20sseldd 3949 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝐶)
7066, 9, 40, 68, 69homfval 17659 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
7163, 65, 703eqtr4rd 2776 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
7271ralrimivva 3181 . . . 4 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
73 fveq2 6860 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
74 df-ov 7392 . . . . . . 7 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
7573, 74eqtr4di 2783 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
76 fveq2 6860 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
77 df-ov 7392 . . . . . . 7 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
7876, 77eqtr4di 2783 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
7975, 78eqeq12d 2746 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
8079ralxp 5807 . . . 4 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
8172, 80sylibr 234 . . 3 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
8266, 9homffn 17660 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
8382a1i 11 . . . 4 (𝜑𝐽 Fn (𝐶 × 𝐶))
84 xpss12 5655 . . . . 5 ((𝑆𝐶𝑆𝐶) → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
8515, 15, 84syl2anc 584 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
86 fvreseq1 7013 . . . 4 (((𝐽 Fn (𝐶 × 𝐶) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶)) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8783, 6, 85, 86syl21anc 837 . . 3 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8881, 87mpbird 257 . 2 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
896, 15, 883jca 1128 1 (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  wss 3916  c0 4298  {csn 4591  cop 4597   ciun 4957   class class class wbr 5109   × cxp 5638  ccnv 5639  cres 5642  cima 5643   Fn wfn 6508  ontowfo 6511  cfv 6513  (class class class)co 7389  cmpo 7391  Basecbs 17185  Hom chom 17237  Homf chomf 17633   Func cfunc 17822   Full cful 17872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-homf 17637  df-func 17826  df-full 17874
This theorem is referenced by:  imasubc2  49131  idfullsubc  49140
  Copyright terms: Public domain W3C validator