Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc Structured version   Visualization version   GIF version

Theorem imasubc 49133
Description: An image of a full functor is a full subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imasubc.f (𝜑𝐹(𝐷 Full 𝐸)𝐺)
imasubc.c 𝐶 = (Base‘𝐸)
imasubc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imasubc (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc
Dummy variables 𝑚 𝑛 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.f . . . 4 (𝜑𝐹(𝐷 Full 𝐸)𝐺)
2 relfull 17852 . . . . 5 Rel (𝐷 Full 𝐸)
32brrelex1i 5687 . . . 4 (𝐹(𝐷 Full 𝐸)𝐺𝐹 ∈ V)
41, 3syl 17 . . 3 (𝜑𝐹 ∈ V)
5 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
64, 4, 5imasubclem2 49087 . 2 (𝜑𝐾 Fn (𝑆 × 𝑆))
7 imasubc.s . . 3 𝑆 = (𝐹𝐴)
8 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
9 imasubc.c . . . . 5 𝐶 = (Base‘𝐸)
10 fullfunc 17850 . . . . . . 7 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1110ssbri 5147 . . . . . 6 (𝐹(𝐷 Full 𝐸)𝐺𝐹(𝐷 Func 𝐸)𝐺)
121, 11syl 17 . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
138, 9, 12funcf1 17808 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶𝐶)
1413fimassd 6691 . . 3 (𝜑 → (𝐹𝐴) ⊆ 𝐶)
157, 14eqsstrid 3982 . 2 (𝜑𝑆𝐶)
16 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1716, 7eleqtrdi 2838 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (𝐹𝐴))
18 inisegn0a 48817 . . . . . . . . . 10 (𝑧 ∈ (𝐹𝐴) → (𝐹 “ {𝑧}) ≠ ∅)
1917, 18syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑧}) ≠ ∅)
20 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2120, 7eleqtrdi 2838 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (𝐹𝐴))
22 inisegn0a 48817 . . . . . . . . . 10 (𝑤 ∈ (𝐹𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
2321, 22syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑤}) ≠ ∅)
2419, 23jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅))
25 xpnz 6120 . . . . . . . 8 (((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅) ↔ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2624, 25sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2713ffnd 6671 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn (Base‘𝐷))
2827ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
29 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
30 fniniseg 7014 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
3130biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3228, 29, 31syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3332simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
34 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
35 fniniseg 7014 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
3635biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3728, 34, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3837simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
3933, 38oveq12d 7387 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
40 eqid 2729 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
41 imasubc.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐷)
421ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Full 𝐸)𝐺)
4332simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
4437simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
458, 40, 41, 42, 43, 44fullfo 17856 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
46 foeq3 6752 . . . . . . . . . . . 12 (((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) ↔ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤)))
4746biimpa 476 . . . . . . . . . . 11 ((((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) ∧ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
4839, 45, 47syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
49 foima 6759 . . . . . . . . . 10 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5048, 49syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5150ralrimivva 3178 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
52 fveq2 6840 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
53 df-ov 7372 . . . . . . . . . . . 12 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
5452, 53eqtr4di 2782 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
55 fveq2 6840 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
56 df-ov 7372 . . . . . . . . . . . 12 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
5755, 56eqtr4di 2782 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
5854, 57imaeq12d 6021 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
5958eqeq1d 2731 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)))
6059ralxp 5795 . . . . . . . 8 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
6151, 60sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
62 iuneqconst2 48804 . . . . . . 7 ((((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅ ∧ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
6326, 61, 62syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
644adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
6564, 64, 16, 20, 5imasubclem3 49088 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
66 imasubc.j . . . . . . 7 𝐽 = (Homf𝐸)
6715adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆𝐶)
6867, 16sseldd 3944 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝐶)
6967, 20sseldd 3944 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝐶)
7066, 9, 40, 68, 69homfval 17633 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
7163, 65, 703eqtr4rd 2775 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
7271ralrimivva 3178 . . . 4 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
73 fveq2 6840 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
74 df-ov 7372 . . . . . . 7 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
7573, 74eqtr4di 2782 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
76 fveq2 6840 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
77 df-ov 7372 . . . . . . 7 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
7876, 77eqtr4di 2782 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
7975, 78eqeq12d 2745 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
8079ralxp 5795 . . . 4 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
8172, 80sylibr 234 . . 3 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
8266, 9homffn 17634 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
8382a1i 11 . . . 4 (𝜑𝐽 Fn (𝐶 × 𝐶))
84 xpss12 5646 . . . . 5 ((𝑆𝐶𝑆𝐶) → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
8515, 15, 84syl2anc 584 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
86 fvreseq1 6993 . . . 4 (((𝐽 Fn (𝐶 × 𝐶) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶)) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8783, 6, 85, 86syl21anc 837 . . 3 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8881, 87mpbird 257 . 2 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
896, 15, 883jca 1128 1 (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  wss 3911  c0 4292  {csn 4585  cop 4591   ciun 4951   class class class wbr 5102   × cxp 5629  ccnv 5630  cres 5633  cima 5634   Fn wfn 6494  ontowfo 6497  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  Hom chom 17207  Homf chomf 17607   Func cfunc 17796   Full cful 17846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-homf 17611  df-func 17800  df-full 17848
This theorem is referenced by:  imasubc2  49134  idfullsubc  49143
  Copyright terms: Public domain W3C validator