Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc Structured version   Visualization version   GIF version

Theorem imasubc 49262
Description: An image of a full functor is a full subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imasubc.f (𝜑𝐹(𝐷 Full 𝐸)𝐺)
imasubc.c 𝐶 = (Base‘𝐸)
imasubc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imasubc (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc
Dummy variables 𝑚 𝑛 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.f . . . 4 (𝜑𝐹(𝐷 Full 𝐸)𝐺)
2 relfull 17817 . . . . 5 Rel (𝐷 Full 𝐸)
32brrelex1i 5670 . . . 4 (𝐹(𝐷 Full 𝐸)𝐺𝐹 ∈ V)
41, 3syl 17 . . 3 (𝜑𝐹 ∈ V)
5 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
64, 4, 5imasubclem2 49216 . 2 (𝜑𝐾 Fn (𝑆 × 𝑆))
7 imasubc.s . . 3 𝑆 = (𝐹𝐴)
8 eqid 2731 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
9 imasubc.c . . . . 5 𝐶 = (Base‘𝐸)
10 fullfunc 17815 . . . . . . 7 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1110ssbri 5134 . . . . . 6 (𝐹(𝐷 Full 𝐸)𝐺𝐹(𝐷 Func 𝐸)𝐺)
121, 11syl 17 . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
138, 9, 12funcf1 17773 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶𝐶)
1413fimassd 6672 . . 3 (𝜑 → (𝐹𝐴) ⊆ 𝐶)
157, 14eqsstrid 3968 . 2 (𝜑𝑆𝐶)
16 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1716, 7eleqtrdi 2841 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (𝐹𝐴))
18 inisegn0a 48946 . . . . . . . . . 10 (𝑧 ∈ (𝐹𝐴) → (𝐹 “ {𝑧}) ≠ ∅)
1917, 18syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑧}) ≠ ∅)
20 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2120, 7eleqtrdi 2841 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (𝐹𝐴))
22 inisegn0a 48946 . . . . . . . . . 10 (𝑤 ∈ (𝐹𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
2321, 22syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑤}) ≠ ∅)
2419, 23jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅))
25 xpnz 6106 . . . . . . . 8 (((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅) ↔ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2624, 25sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2713ffnd 6652 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn (Base‘𝐷))
2827ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
29 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
30 fniniseg 6993 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
3130biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3228, 29, 31syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3332simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
34 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
35 fniniseg 6993 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
3635biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3728, 34, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3837simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
3933, 38oveq12d 7364 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
40 eqid 2731 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
41 imasubc.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐷)
421ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Full 𝐸)𝐺)
4332simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
4437simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
458, 40, 41, 42, 43, 44fullfo 17821 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
46 foeq3 6733 . . . . . . . . . . . 12 (((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) ↔ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤)))
4746biimpa 476 . . . . . . . . . . 11 ((((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) ∧ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
4839, 45, 47syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
49 foima 6740 . . . . . . . . . 10 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5048, 49syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5150ralrimivva 3175 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
52 fveq2 6822 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
53 df-ov 7349 . . . . . . . . . . . 12 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
5452, 53eqtr4di 2784 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
55 fveq2 6822 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
56 df-ov 7349 . . . . . . . . . . . 12 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
5755, 56eqtr4di 2784 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
5854, 57imaeq12d 6009 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
5958eqeq1d 2733 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)))
6059ralxp 5780 . . . . . . . 8 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
6151, 60sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
62 iuneqconst2 48933 . . . . . . 7 ((((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅ ∧ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
6326, 61, 62syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
644adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
6564, 64, 16, 20, 5imasubclem3 49217 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
66 imasubc.j . . . . . . 7 𝐽 = (Homf𝐸)
6715adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆𝐶)
6867, 16sseldd 3930 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝐶)
6967, 20sseldd 3930 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝐶)
7066, 9, 40, 68, 69homfval 17598 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
7163, 65, 703eqtr4rd 2777 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
7271ralrimivva 3175 . . . 4 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
73 fveq2 6822 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
74 df-ov 7349 . . . . . . 7 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
7573, 74eqtr4di 2784 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
76 fveq2 6822 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
77 df-ov 7349 . . . . . . 7 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
7876, 77eqtr4di 2784 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
7975, 78eqeq12d 2747 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
8079ralxp 5780 . . . 4 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
8172, 80sylibr 234 . . 3 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
8266, 9homffn 17599 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
8382a1i 11 . . . 4 (𝜑𝐽 Fn (𝐶 × 𝐶))
84 xpss12 5629 . . . . 5 ((𝑆𝐶𝑆𝐶) → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
8515, 15, 84syl2anc 584 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
86 fvreseq1 6972 . . . 4 (((𝐽 Fn (𝐶 × 𝐶) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶)) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8783, 6, 85, 86syl21anc 837 . . 3 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8881, 87mpbird 257 . 2 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
896, 15, 883jca 1128 1 (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  wss 3897  c0 4280  {csn 4573  cop 4579   ciun 4939   class class class wbr 5089   × cxp 5612  ccnv 5613  cres 5616  cima 5617   Fn wfn 6476  ontowfo 6479  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  Hom chom 17172  Homf chomf 17572   Func cfunc 17761   Full cful 17811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-homf 17576  df-func 17765  df-full 17813
This theorem is referenced by:  imasubc2  49263  idfullsubc  49272
  Copyright terms: Public domain W3C validator