| Step | Hyp | Ref
| Expression |
| 1 | | imasubc.f |
. . . 4
⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) |
| 2 | | relfull 17910 |
. . . . 5
⊢ Rel
(𝐷 Full 𝐸) |
| 3 | 2 | brrelex1i 5708 |
. . . 4
⊢ (𝐹(𝐷 Full 𝐸)𝐺 → 𝐹 ∈ V) |
| 4 | 1, 3 | syl 17 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
| 5 | | imasubc.k |
. . 3
⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪
𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 6 | 4, 4, 5 | imasubclem2 48957 |
. 2
⊢ (𝜑 → 𝐾 Fn (𝑆 × 𝑆)) |
| 7 | | imasubc.s |
. . 3
⊢ 𝑆 = (𝐹 “ 𝐴) |
| 8 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 9 | | imasubc.c |
. . . . 5
⊢ 𝐶 = (Base‘𝐸) |
| 10 | | fullfunc 17908 |
. . . . . . 7
⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) |
| 11 | 10 | ssbri 5162 |
. . . . . 6
⊢ (𝐹(𝐷 Full 𝐸)𝐺 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 12 | 1, 11 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 13 | 8, 9, 12 | funcf1 17866 |
. . . 4
⊢ (𝜑 → 𝐹:(Base‘𝐷)⟶𝐶) |
| 14 | 13 | fimassd 6724 |
. . 3
⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐶) |
| 15 | 7, 14 | eqsstrid 3995 |
. 2
⊢ (𝜑 → 𝑆 ⊆ 𝐶) |
| 16 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑧 ∈ 𝑆) |
| 17 | 16, 7 | eleqtrdi 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑧 ∈ (𝐹 “ 𝐴)) |
| 18 | | inisegn0a 48708 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝐹 “ 𝐴) → (◡𝐹 “ {𝑧}) ≠ ∅) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (◡𝐹 “ {𝑧}) ≠ ∅) |
| 20 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑤 ∈ 𝑆) |
| 21 | 20, 7 | eleqtrdi 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑤 ∈ (𝐹 “ 𝐴)) |
| 22 | | inisegn0a 48708 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (𝐹 “ 𝐴) → (◡𝐹 “ {𝑤}) ≠ ∅) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (◡𝐹 “ {𝑤}) ≠ ∅) |
| 24 | 19, 23 | jca 511 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((◡𝐹 “ {𝑧}) ≠ ∅ ∧ (◡𝐹 “ {𝑤}) ≠ ∅)) |
| 25 | | xpnz 6146 |
. . . . . . . 8
⊢ (((◡𝐹 “ {𝑧}) ≠ ∅ ∧ (◡𝐹 “ {𝑤}) ≠ ∅) ↔ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤})) ≠ ∅) |
| 26 | 24, 25 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤})) ≠ ∅) |
| 27 | 13 | ffnd 6704 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 Fn (Base‘𝐷)) |
| 28 | 27 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷)) |
| 29 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝑚 ∈ (◡𝐹 “ {𝑧})) |
| 30 | | fniniseg 7047 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (◡𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑧))) |
| 31 | 30 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (◡𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑧)) |
| 32 | 28, 29, 31 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹‘𝑚) = 𝑧)) |
| 33 | 32 | simprd 495 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝐹‘𝑚) = 𝑧) |
| 34 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝑛 ∈ (◡𝐹 “ {𝑤})) |
| 35 | | fniniseg 7047 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (◡𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹‘𝑛) = 𝑤))) |
| 36 | 35 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹‘𝑛) = 𝑤)) |
| 37 | 28, 34, 36 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹‘𝑛) = 𝑤)) |
| 38 | 37 | simprd 495 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝐹‘𝑛) = 𝑤) |
| 39 | 33, 38 | oveq12d 7418 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → ((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 40 | | eqid 2734 |
. . . . . . . . . . . 12
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 41 | | imasubc.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (Hom ‘𝐷) |
| 42 | 1 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝐹(𝐷 Full 𝐸)𝐺) |
| 43 | 32 | simpld 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷)) |
| 44 | 37 | simpld 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷)) |
| 45 | 8, 40, 41, 42, 43, 44 | fullfo 17914 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛))) |
| 46 | | foeq3 6785 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛)) = (𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛)) ↔ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))) |
| 47 | 46 | biimpa 476 |
. . . . . . . . . . 11
⊢ ((((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛)) = (𝑧(Hom ‘𝐸)𝑤) ∧ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹‘𝑚)(Hom ‘𝐸)(𝐹‘𝑛))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤)) |
| 48 | 39, 45, 47 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤)) |
| 49 | | foima 6792 |
. . . . . . . . . 10
⊢ ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) ∧ (𝑚 ∈ (◡𝐹 “ {𝑧}) ∧ 𝑛 ∈ (◡𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 51 | 50 | ralrimivva 3185 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ∀𝑚 ∈ (◡𝐹 “ {𝑧})∀𝑛 ∈ (◡𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 52 | | fveq2 6873 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (𝐺‘𝑝) = (𝐺‘〈𝑚, 𝑛〉)) |
| 53 | | df-ov 7403 |
. . . . . . . . . . . 12
⊢ (𝑚𝐺𝑛) = (𝐺‘〈𝑚, 𝑛〉) |
| 54 | 52, 53 | eqtr4di 2787 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (𝐺‘𝑝) = (𝑚𝐺𝑛)) |
| 55 | | fveq2 6873 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (𝐻‘𝑝) = (𝐻‘〈𝑚, 𝑛〉)) |
| 56 | | df-ov 7403 |
. . . . . . . . . . . 12
⊢ (𝑚𝐻𝑛) = (𝐻‘〈𝑚, 𝑛〉) |
| 57 | 55, 56 | eqtr4di 2787 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (𝐻‘𝑝) = (𝑚𝐻𝑛)) |
| 58 | 54, 57 | imaeq12d 6046 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑚, 𝑛〉 → ((𝐺‘𝑝) “ (𝐻‘𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛))) |
| 59 | 58 | eqeq1d 2736 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑚, 𝑛〉 → (((𝐺‘𝑝) “ (𝐻‘𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))) |
| 60 | 59 | ralxp 5819 |
. . . . . . . 8
⊢
(∀𝑝 ∈
((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (◡𝐹 “ {𝑧})∀𝑛 ∈ (◡𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 61 | 51, 60 | sylibr 234 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ∀𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 62 | | iuneqconst2 48695 |
. . . . . . 7
⊢ ((((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤})) ≠ ∅ ∧ ∀𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) → ∪
𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 63 | 26, 61, 62 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ∪ 𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) |
| 64 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝐹 ∈ V) |
| 65 | 64, 64, 16, 20, 5 | imasubclem3 48958 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐾𝑤) = ∪ 𝑝 ∈ ((◡𝐹 “ {𝑧}) × (◡𝐹 “ {𝑤}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| 66 | | imasubc.j |
. . . . . . 7
⊢ 𝐽 = (Homf
‘𝐸) |
| 67 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑆 ⊆ 𝐶) |
| 68 | 67, 16 | sseldd 3957 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑧 ∈ 𝐶) |
| 69 | 67, 20 | sseldd 3957 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → 𝑤 ∈ 𝐶) |
| 70 | 66, 9, 40, 68, 69 | homfval 17691 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤)) |
| 71 | 63, 65, 70 | 3eqtr4rd 2780 |
. . . . 5
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤)) |
| 72 | 71 | ralrimivva 3185 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤)) |
| 73 | | fveq2 6873 |
. . . . . . 7
⊢ (𝑞 = 〈𝑧, 𝑤〉 → (𝐽‘𝑞) = (𝐽‘〈𝑧, 𝑤〉)) |
| 74 | | df-ov 7403 |
. . . . . . 7
⊢ (𝑧𝐽𝑤) = (𝐽‘〈𝑧, 𝑤〉) |
| 75 | 73, 74 | eqtr4di 2787 |
. . . . . 6
⊢ (𝑞 = 〈𝑧, 𝑤〉 → (𝐽‘𝑞) = (𝑧𝐽𝑤)) |
| 76 | | fveq2 6873 |
. . . . . . 7
⊢ (𝑞 = 〈𝑧, 𝑤〉 → (𝐾‘𝑞) = (𝐾‘〈𝑧, 𝑤〉)) |
| 77 | | df-ov 7403 |
. . . . . . 7
⊢ (𝑧𝐾𝑤) = (𝐾‘〈𝑧, 𝑤〉) |
| 78 | 76, 77 | eqtr4di 2787 |
. . . . . 6
⊢ (𝑞 = 〈𝑧, 𝑤〉 → (𝐾‘𝑞) = (𝑧𝐾𝑤)) |
| 79 | 75, 78 | eqeq12d 2750 |
. . . . 5
⊢ (𝑞 = 〈𝑧, 𝑤〉 → ((𝐽‘𝑞) = (𝐾‘𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤))) |
| 80 | 79 | ralxp 5819 |
. . . 4
⊢
(∀𝑞 ∈
(𝑆 × 𝑆)(𝐽‘𝑞) = (𝐾‘𝑞) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤)) |
| 81 | 72, 80 | sylibr 234 |
. . 3
⊢ (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽‘𝑞) = (𝐾‘𝑞)) |
| 82 | 66, 9 | homffn 17692 |
. . . . 5
⊢ 𝐽 Fn (𝐶 × 𝐶) |
| 83 | 82 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐽 Fn (𝐶 × 𝐶)) |
| 84 | | xpss12 5667 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐶 ∧ 𝑆 ⊆ 𝐶) → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶)) |
| 85 | 15, 15, 84 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶)) |
| 86 | | fvreseq1 7026 |
. . . 4
⊢ (((𝐽 Fn (𝐶 × 𝐶) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶)) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽‘𝑞) = (𝐾‘𝑞))) |
| 87 | 83, 6, 85, 86 | syl21anc 837 |
. . 3
⊢ (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽‘𝑞) = (𝐾‘𝑞))) |
| 88 | 81, 87 | mpbird 257 |
. 2
⊢ (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾) |
| 89 | 6, 15, 88 | 3jca 1128 |
1
⊢ (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆 ⊆ 𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)) |