Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubc Structured version   Visualization version   GIF version

Theorem imasubc 48961
Description: An image of a full functor is a full subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubc.s 𝑆 = (𝐹𝐴)
imasubc.h 𝐻 = (Hom ‘𝐷)
imasubc.k 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
imasubc.f (𝜑𝐹(𝐷 Full 𝐸)𝐺)
imasubc.c 𝐶 = (Base‘𝐸)
imasubc.j 𝐽 = (Homf𝐸)
Assertion
Ref Expression
imasubc (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Distinct variable groups:   𝐹,𝑝,𝑥,𝑦   𝐺,𝑝,𝑥,𝑦   𝐻,𝑝,𝑥,𝑦   𝑥,𝑆,𝑦   𝐸,𝑝   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑝)   𝐴(𝑥,𝑦,𝑝)   𝐶(𝑥,𝑦,𝑝)   𝐷(𝑥,𝑦,𝑝)   𝑆(𝑝)   𝐸(𝑥,𝑦)   𝐽(𝑥,𝑦,𝑝)   𝐾(𝑥,𝑦,𝑝)

Proof of Theorem imasubc
Dummy variables 𝑚 𝑛 𝑞 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasubc.f . . . 4 (𝜑𝐹(𝐷 Full 𝐸)𝐺)
2 relfull 17910 . . . . 5 Rel (𝐷 Full 𝐸)
32brrelex1i 5708 . . . 4 (𝐹(𝐷 Full 𝐸)𝐺𝐹 ∈ V)
41, 3syl 17 . . 3 (𝜑𝐹 ∈ V)
5 imasubc.k . . 3 𝐾 = (𝑥𝑆, 𝑦𝑆 𝑝 ∈ ((𝐹 “ {𝑥}) × (𝐹 “ {𝑦}))((𝐺𝑝) “ (𝐻𝑝)))
64, 4, 5imasubclem2 48957 . 2 (𝜑𝐾 Fn (𝑆 × 𝑆))
7 imasubc.s . . 3 𝑆 = (𝐹𝐴)
8 eqid 2734 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
9 imasubc.c . . . . 5 𝐶 = (Base‘𝐸)
10 fullfunc 17908 . . . . . . 7 (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸)
1110ssbri 5162 . . . . . 6 (𝐹(𝐷 Full 𝐸)𝐺𝐹(𝐷 Func 𝐸)𝐺)
121, 11syl 17 . . . . 5 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
138, 9, 12funcf1 17866 . . . 4 (𝜑𝐹:(Base‘𝐷)⟶𝐶)
1413fimassd 6724 . . 3 (𝜑 → (𝐹𝐴) ⊆ 𝐶)
157, 14eqsstrid 3995 . 2 (𝜑𝑆𝐶)
16 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝑆)
1716, 7eleqtrdi 2843 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧 ∈ (𝐹𝐴))
18 inisegn0a 48708 . . . . . . . . . 10 (𝑧 ∈ (𝐹𝐴) → (𝐹 “ {𝑧}) ≠ ∅)
1917, 18syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑧}) ≠ ∅)
20 simprr 772 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝑆)
2120, 7eleqtrdi 2843 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤 ∈ (𝐹𝐴))
22 inisegn0a 48708 . . . . . . . . . 10 (𝑤 ∈ (𝐹𝐴) → (𝐹 “ {𝑤}) ≠ ∅)
2321, 22syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝐹 “ {𝑤}) ≠ ∅)
2419, 23jca 511 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅))
25 xpnz 6146 . . . . . . . 8 (((𝐹 “ {𝑧}) ≠ ∅ ∧ (𝐹 “ {𝑤}) ≠ ∅) ↔ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2624, 25sylib 218 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅)
2713ffnd 6704 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn (Base‘𝐷))
2827ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹 Fn (Base‘𝐷))
29 simprl 770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (𝐹 “ {𝑧}))
30 fniniseg 7047 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑚 ∈ (𝐹 “ {𝑧}) ↔ (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧)))
3130biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑚 ∈ (𝐹 “ {𝑧})) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3228, 29, 31syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚 ∈ (Base‘𝐷) ∧ (𝐹𝑚) = 𝑧))
3332simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑚) = 𝑧)
34 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (𝐹 “ {𝑤}))
35 fniniseg 7047 . . . . . . . . . . . . . . 15 (𝐹 Fn (Base‘𝐷) → (𝑛 ∈ (𝐹 “ {𝑤}) ↔ (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤)))
3635biimpa 476 . . . . . . . . . . . . . 14 ((𝐹 Fn (Base‘𝐷) ∧ 𝑛 ∈ (𝐹 “ {𝑤})) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3728, 34, 36syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑛 ∈ (Base‘𝐷) ∧ (𝐹𝑛) = 𝑤))
3837simprd 495 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝐹𝑛) = 𝑤)
3933, 38oveq12d 7418 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
40 eqid 2734 . . . . . . . . . . . 12 (Hom ‘𝐸) = (Hom ‘𝐸)
41 imasubc.h . . . . . . . . . . . 12 𝐻 = (Hom ‘𝐷)
421ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝐹(𝐷 Full 𝐸)𝐺)
4332simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑚 ∈ (Base‘𝐷))
4437simpld 494 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → 𝑛 ∈ (Base‘𝐷))
458, 40, 41, 42, 43, 44fullfo 17914 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)))
46 foeq3 6785 . . . . . . . . . . . 12 (((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) ↔ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤)))
4746biimpa 476 . . . . . . . . . . 11 ((((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛)) = (𝑧(Hom ‘𝐸)𝑤) ∧ (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→((𝐹𝑚)(Hom ‘𝐸)(𝐹𝑛))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
4839, 45, 47syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → (𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤))
49 foima 6792 . . . . . . . . . 10 ((𝑚𝐺𝑛):(𝑚𝐻𝑛)–onto→(𝑧(Hom ‘𝐸)𝑤) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5048, 49syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆𝑤𝑆)) ∧ (𝑚 ∈ (𝐹 “ {𝑧}) ∧ 𝑛 ∈ (𝐹 “ {𝑤}))) → ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
5150ralrimivva 3185 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
52 fveq2 6873 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝐺‘⟨𝑚, 𝑛⟩))
53 df-ov 7403 . . . . . . . . . . . 12 (𝑚𝐺𝑛) = (𝐺‘⟨𝑚, 𝑛⟩)
5452, 53eqtr4di 2787 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐺𝑝) = (𝑚𝐺𝑛))
55 fveq2 6873 . . . . . . . . . . . 12 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝐻‘⟨𝑚, 𝑛⟩))
56 df-ov 7403 . . . . . . . . . . . 12 (𝑚𝐻𝑛) = (𝐻‘⟨𝑚, 𝑛⟩)
5755, 56eqtr4di 2787 . . . . . . . . . . 11 (𝑝 = ⟨𝑚, 𝑛⟩ → (𝐻𝑝) = (𝑚𝐻𝑛))
5854, 57imaeq12d 6046 . . . . . . . . . 10 (𝑝 = ⟨𝑚, 𝑛⟩ → ((𝐺𝑝) “ (𝐻𝑝)) = ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)))
5958eqeq1d 2736 . . . . . . . . 9 (𝑝 = ⟨𝑚, 𝑛⟩ → (((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤)))
6059ralxp 5819 . . . . . . . 8 (∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤) ↔ ∀𝑚 ∈ (𝐹 “ {𝑧})∀𝑛 ∈ (𝐹 “ {𝑤})((𝑚𝐺𝑛) “ (𝑚𝐻𝑛)) = (𝑧(Hom ‘𝐸)𝑤))
6151, 60sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
62 iuneqconst2 48695 . . . . . . 7 ((((𝐹 “ {𝑧}) × (𝐹 “ {𝑤})) ≠ ∅ ∧ ∀𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
6326, 61, 62syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)) = (𝑧(Hom ‘𝐸)𝑤))
644adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝐹 ∈ V)
6564, 64, 16, 20, 5imasubclem3 48958 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐾𝑤) = 𝑝 ∈ ((𝐹 “ {𝑧}) × (𝐹 “ {𝑤}))((𝐺𝑝) “ (𝐻𝑝)))
66 imasubc.j . . . . . . 7 𝐽 = (Homf𝐸)
6715adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑆𝐶)
6867, 16sseldd 3957 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑧𝐶)
6967, 20sseldd 3957 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → 𝑤𝐶)
7066, 9, 40, 68, 69homfval 17691 . . . . . 6 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧(Hom ‘𝐸)𝑤))
7163, 65, 703eqtr4rd 2780 . . . . 5 ((𝜑 ∧ (𝑧𝑆𝑤𝑆)) → (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
7271ralrimivva 3185 . . . 4 (𝜑 → ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
73 fveq2 6873 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝐽‘⟨𝑧, 𝑤⟩))
74 df-ov 7403 . . . . . . 7 (𝑧𝐽𝑤) = (𝐽‘⟨𝑧, 𝑤⟩)
7573, 74eqtr4di 2787 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐽𝑞) = (𝑧𝐽𝑤))
76 fveq2 6873 . . . . . . 7 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝐾‘⟨𝑧, 𝑤⟩))
77 df-ov 7403 . . . . . . 7 (𝑧𝐾𝑤) = (𝐾‘⟨𝑧, 𝑤⟩)
7876, 77eqtr4di 2787 . . . . . 6 (𝑞 = ⟨𝑧, 𝑤⟩ → (𝐾𝑞) = (𝑧𝐾𝑤))
7975, 78eqeq12d 2750 . . . . 5 (𝑞 = ⟨𝑧, 𝑤⟩ → ((𝐽𝑞) = (𝐾𝑞) ↔ (𝑧𝐽𝑤) = (𝑧𝐾𝑤)))
8079ralxp 5819 . . . 4 (∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞) ↔ ∀𝑧𝑆𝑤𝑆 (𝑧𝐽𝑤) = (𝑧𝐾𝑤))
8172, 80sylibr 234 . . 3 (𝜑 → ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞))
8266, 9homffn 17692 . . . . 5 𝐽 Fn (𝐶 × 𝐶)
8382a1i 11 . . . 4 (𝜑𝐽 Fn (𝐶 × 𝐶))
84 xpss12 5667 . . . . 5 ((𝑆𝐶𝑆𝐶) → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
8515, 15, 84syl2anc 584 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶))
86 fvreseq1 7026 . . . 4 (((𝐽 Fn (𝐶 × 𝐶) ∧ 𝐾 Fn (𝑆 × 𝑆)) ∧ (𝑆 × 𝑆) ⊆ (𝐶 × 𝐶)) → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8783, 6, 85, 86syl21anc 837 . . 3 (𝜑 → ((𝐽 ↾ (𝑆 × 𝑆)) = 𝐾 ↔ ∀𝑞 ∈ (𝑆 × 𝑆)(𝐽𝑞) = (𝐾𝑞)))
8881, 87mpbird 257 . 2 (𝜑 → (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾)
896, 15, 883jca 1128 1 (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆𝐶 ∧ (𝐽 ↾ (𝑆 × 𝑆)) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  Vcvv 3457  wss 3924  c0 4306  {csn 4599  cop 4605   ciun 4965   class class class wbr 5117   × cxp 5650  ccnv 5651  cres 5654  cima 5655   Fn wfn 6523  ontowfo 6526  cfv 6528  (class class class)co 7400  cmpo 7402  Basecbs 17215  Hom chom 17269  Homf chomf 17665   Func cfunc 17854   Full cful 17904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-1st 7983  df-2nd 7984  df-map 8837  df-ixp 8907  df-homf 17669  df-func 17858  df-full 17906
This theorem is referenced by:  imasubc2  48962
  Copyright terms: Public domain W3C validator