| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunrab | Structured version Visualization version GIF version | ||
| Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| iunrab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunab 5010 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
| 2 | df-rab 3403 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)}) |
| 4 | 3 | iuneq2i 4973 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} |
| 5 | df-rab 3403 | . . 3 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)} | |
| 6 | r19.42v 3167 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
| 7 | 6 | abbii 2796 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)} |
| 8 | 5, 7 | eqtr4i 2755 | . 2 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} |
| 9 | 1, 4, 8 | 3eqtr4i 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {crab 3402 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: hashrabrex 15767 incexc2 15780 phisum 16737 itg2monolem1 25684 aannenlem1 26269 musum 27134 lgsquadlem1 27324 lgsquadlem2 27325 edglnl 29123 rabrexfi 32485 iunpreima 32543 poimirlem27 37634 cnambfre 37655 mapdval3N 41618 mapdval5N 41620 fiphp3d 42800 |
| Copyright terms: Public domain | W3C validator |