MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunrab Structured version   Visualization version   GIF version

Theorem iunrab 4999
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
iunrab 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem iunrab
StepHypRef Expression
1 iunab 4998 . 2 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)} = {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)}
2 df-rab 3396 . . . 4 {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)}
32a1i 11 . . 3 (𝑥𝐴 → {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)})
43iuneq2i 4961 . 2 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)}
5 df-rab 3396 . . 3 {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑)}
6 r19.42v 3164 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
76abbii 2798 . . 3 {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑)}
85, 7eqtr4i 2757 . 2 {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)}
91, 4, 83eqtr4i 2764 1 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {crab 3395   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-ss 3914  df-iun 4941
This theorem is referenced by:  hashrabrex  15732  incexc2  15745  phisum  16702  chnfi  18540  itg2monolem1  25678  aannenlem1  26263  musum  27128  lgsquadlem1  27318  lgsquadlem2  27319  edglnl  29121  rabrexfi  32486  iunpreima  32544  poimirlem27  37697  cnambfre  37718  mapdval3N  41740  mapdval5N  41742  fiphp3d  42922
  Copyright terms: Public domain W3C validator