MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunrab Structured version   Visualization version   GIF version

Theorem iunrab 4978
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
iunrab 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem iunrab
StepHypRef Expression
1 iunab 4977 . 2 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)} = {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)}
2 df-rab 3072 . . . 4 {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)}
32a1i 11 . . 3 (𝑥𝐴 → {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)})
43iuneq2i 4942 . 2 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)}
5 df-rab 3072 . . 3 {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑)}
6 r19.42v 3276 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
76abbii 2809 . . 3 {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑)}
85, 7eqtr4i 2769 . 2 {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)}
91, 4, 83eqtr4i 2776 1 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  {crab 3067   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-iun 4923
This theorem is referenced by:  hashrabrex  15465  incexc2  15478  phisum  16419  itg2monolem1  24820  aannenlem1  25393  musum  26245  lgsquadlem1  26433  lgsquadlem2  26434  edglnl  27416  iunpreima  30805  poimirlem27  35731  cnambfre  35752  mapdval3N  39572  mapdval5N  39574  fiphp3d  40557
  Copyright terms: Public domain W3C validator