MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunrab Structured version   Visualization version   GIF version

Theorem iunrab 5075
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
iunrab 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem iunrab
StepHypRef Expression
1 iunab 5074 . 2 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)} = {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)}
2 df-rab 3444 . . . 4 {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)}
32a1i 11 . . 3 (𝑥𝐴 → {𝑦𝐵𝜑} = {𝑦 ∣ (𝑦𝐵𝜑)})
43iuneq2i 5036 . 2 𝑥𝐴 {𝑦𝐵𝜑} = 𝑥𝐴 {𝑦 ∣ (𝑦𝐵𝜑)}
5 df-rab 3444 . . 3 {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑)}
6 r19.42v 3197 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝜑) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑))
76abbii 2812 . . 3 {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)} = {𝑦 ∣ (𝑦𝐵 ∧ ∃𝑥𝐴 𝜑)}
85, 7eqtr4i 2771 . 2 {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑} = {𝑦 ∣ ∃𝑥𝐴 (𝑦𝐵𝜑)}
91, 4, 83eqtr4i 2778 1 𝑥𝐴 {𝑦𝐵𝜑} = {𝑦𝐵 ∣ ∃𝑥𝐴 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  {crab 3443   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-ss 3993  df-iun 5017
This theorem is referenced by:  hashrabrex  15873  incexc2  15886  phisum  16837  itg2monolem1  25805  aannenlem1  26388  musum  27252  lgsquadlem1  27442  lgsquadlem2  27443  edglnl  29178  rabrexfi  32534  iunpreima  32587  poimirlem27  37607  cnambfre  37628  mapdval3N  41588  mapdval5N  41590  fiphp3d  42775
  Copyright terms: Public domain W3C validator