| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunrab | Structured version Visualization version GIF version | ||
| Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| iunrab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunab 5015 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
| 2 | df-rab 3406 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)}) |
| 4 | 3 | iuneq2i 4977 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} |
| 5 | df-rab 3406 | . . 3 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)} | |
| 6 | r19.42v 3169 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
| 7 | 6 | abbii 2796 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)} |
| 8 | 5, 7 | eqtr4i 2755 | . 2 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} |
| 9 | 1, 4, 8 | 3eqtr4i 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {crab 3405 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-ss 3931 df-iun 4957 |
| This theorem is referenced by: hashrabrex 15791 incexc2 15804 phisum 16761 itg2monolem1 25651 aannenlem1 26236 musum 27101 lgsquadlem1 27291 lgsquadlem2 27292 edglnl 29070 rabrexfi 32435 iunpreima 32493 poimirlem27 37641 cnambfre 37662 mapdval3N 41625 mapdval5N 41627 fiphp3d 42807 |
| Copyright terms: Public domain | W3C validator |