Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunrab | Structured version Visualization version GIF version |
Description: The indexed union of a restricted class abstraction. (Contributed by NM, 3-Jan-2004.) (Proof shortened by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
iunrab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunab 4977 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
2 | df-rab 3072 | . . . 4 ⊢ {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)}) |
4 | 3 | iuneq2i 4942 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ 𝜑)} |
5 | df-rab 3072 | . . 3 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)} | |
6 | r19.42v 3276 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
7 | 6 | abbii 2809 | . . 3 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} = {𝑦 ∣ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)} |
8 | 5, 7 | eqtr4i 2769 | . 2 ⊢ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)} |
9 | 1, 4, 8 | 3eqtr4i 2776 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 {crab 3067 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-iun 4923 |
This theorem is referenced by: hashrabrex 15465 incexc2 15478 phisum 16419 itg2monolem1 24820 aannenlem1 25393 musum 26245 lgsquadlem1 26433 lgsquadlem2 26434 edglnl 27416 iunpreima 30805 poimirlem27 35731 cnambfre 35752 mapdval3N 39572 mapdval5N 39574 fiphp3d 40557 |
Copyright terms: Public domain | W3C validator |