Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joinval2lem | Structured version Visualization version GIF version |
Description: Lemma for joinval2 17728 and joineu 17729. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu 17729 into joinlem 17730? |
Ref | Expression |
---|---|
joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
joinval2.l | ⊢ ≤ = (le‘𝐾) |
joinval2.j | ⊢ ∨ = (join‘𝐾) |
joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
joinval2lem | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5030 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑋 ≤ 𝑥)) | |
2 | breq1 5030 | . . 3 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑥 ↔ 𝑌 ≤ 𝑥)) | |
3 | 1, 2 | ralprg 4582 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ↔ (𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥))) |
4 | breq1 5030 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧)) | |
5 | breq1 5030 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧)) | |
6 | 4, 5 | ralprg 4582 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 ↔ (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
7 | 6 | imbi1d 345 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
8 | 7 | ralbidv 3109 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
9 | 3, 8 | anbi12d 634 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∀wral 3053 {cpr 4515 class class class wbr 5027 ‘cfv 6333 Basecbs 16579 lecple 16668 joincjn 17663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-v 3399 df-un 3846 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 |
This theorem is referenced by: joinval2 17728 joineu 17729 |
Copyright terms: Public domain | W3C validator |