| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joinval2lem | Structured version Visualization version GIF version | ||
| Description: Lemma for joinval2 18396 and joineu 18397. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu 18397 into joinlem 18398? |
| Ref | Expression |
|---|---|
| joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| joinval2.l | ⊢ ≤ = (le‘𝐾) |
| joinval2.j | ⊢ ∨ = (join‘𝐾) |
| joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| joinval2lem | ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5127 | . . 3 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑥 ↔ 𝑋 ≤ 𝑥)) | |
| 2 | breq1 5127 | . . 3 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑥 ↔ 𝑌 ≤ 𝑥)) | |
| 3 | 1, 2 | ralprg 4677 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ↔ (𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥))) |
| 4 | breq1 5127 | . . . . 5 ⊢ (𝑦 = 𝑋 → (𝑦 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧)) | |
| 5 | breq1 5127 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧)) | |
| 6 | 4, 5 | ralprg 4677 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 ↔ (𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧))) |
| 7 | 6 | imbi1d 341 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 8 | 7 | ralbidv 3164 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 9 | 3, 8 | anbi12d 632 | 1 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {cpr 4608 class class class wbr 5124 ‘cfv 6536 Basecbs 17233 lecple 17283 joincjn 18328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 |
| This theorem is referenced by: joinval2 18396 joineu 18397 joindm3 48910 |
| Copyright terms: Public domain | W3C validator |