MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval2lem Structured version   Visualization version   GIF version

Theorem joinval2lem 18450
Description: Lemma for joinval2 18451 and joineu 18452. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu 18452 into joinlem 18453?
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
joinval2lem ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝑦,𝐾,𝑧   𝑦,   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑦)   (𝑦)   (𝑥,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem joinval2lem
StepHypRef Expression
1 breq1 5169 . . 3 (𝑦 = 𝑋 → (𝑦 𝑥𝑋 𝑥))
2 breq1 5169 . . 3 (𝑦 = 𝑌 → (𝑦 𝑥𝑌 𝑥))
31, 2ralprg 4719 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ↔ (𝑋 𝑥𝑌 𝑥)))
4 breq1 5169 . . . . 5 (𝑦 = 𝑋 → (𝑦 𝑧𝑋 𝑧))
5 breq1 5169 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
64, 5ralprg 4719 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧 ↔ (𝑋 𝑧𝑌 𝑧)))
76imbi1d 341 . . 3 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧) ↔ ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
87ralbidv 3184 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
93, 8anbi12d 631 1 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {cpr 4650   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  joincjn 18381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167
This theorem is referenced by:  joinval2  18451  joineu  18452  joindm3  48649
  Copyright terms: Public domain W3C validator