MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval2lem Structured version   Visualization version   GIF version

Theorem joinval2lem 18338
Description: Lemma for joinval2 18339 and joineu 18340. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu 18340 into joinlem 18341?
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
joinval2lem ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝑦,𝐾,𝑧   𝑦,   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑦)   (𝑦)   (𝑥,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem joinval2lem
StepHypRef Expression
1 breq1 5151 . . 3 (𝑦 = 𝑋 → (𝑦 𝑥𝑋 𝑥))
2 breq1 5151 . . 3 (𝑦 = 𝑌 → (𝑦 𝑥𝑌 𝑥))
31, 2ralprg 4698 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ↔ (𝑋 𝑥𝑌 𝑥)))
4 breq1 5151 . . . . 5 (𝑦 = 𝑋 → (𝑦 𝑧𝑋 𝑧))
5 breq1 5151 . . . . 5 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
64, 5ralprg 4698 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧 ↔ (𝑋 𝑧𝑌 𝑧)))
76imbi1d 341 . . 3 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧) ↔ ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
87ralbidv 3176 . 2 ((𝑋𝐵𝑌𝐵) → (∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧) ↔ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
93, 8anbi12d 630 1 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  {cpr 4630   class class class wbr 5148  cfv 6543  Basecbs 17149  lecple 17209  joincjn 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149
This theorem is referenced by:  joinval2  18339  joineu  18340  joindm3  47690
  Copyright terms: Public domain W3C validator