Step | Hyp | Ref
| Expression |
1 | | joindm2.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | joindm2.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
3 | | joindm2.u |
. . 3
⊢ 𝑈 = (lub‘𝐾) |
4 | | joindm2.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
5 | 1, 2, 3, 4 | joindm2 46262 |
. 2
⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
6 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
7 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
8 | 6, 7 | prssd 4755 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → {𝑥, 𝑦} ⊆ 𝐵) |
9 | | joindm3.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
10 | | biid 260 |
. . . . . . 7
⊢
((∀𝑣 ∈
{𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤))) |
11 | 1, 9, 3, 10, 2 | lubeldm 18071 |
. . . . . 6
⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤))))) |
12 | 11 | baibd 540 |
. . . . 5
⊢ ((𝜑 ∧ {𝑥, 𝑦} ⊆ 𝐵) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)))) |
13 | 8, 12 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)))) |
14 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ 𝑉) |
15 | 1, 9, 4, 14, 6, 7 | joinval2lem 18098 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
16 | 15 | reubidv 3323 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
17 | 16 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
18 | 13, 17 | bitrd 278 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
19 | 18 | 2ralbidva 3128 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
20 | 5, 19 | bitrd 278 |
1
⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |