| Step | Hyp | Ref
| Expression |
| 1 | | joindm2.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | joindm2.k |
. . 3
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| 3 | | joindm2.u |
. . 3
⊢ 𝑈 = (lub‘𝐾) |
| 4 | | joindm2.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
| 5 | 1, 2, 3, 4 | joindm2 48865 |
. 2
⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈)) |
| 6 | | simprl 771 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 7 | | simprr 773 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 8 | 6, 7 | prssd 4822 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → {𝑥, 𝑦} ⊆ 𝐵) |
| 9 | | joindm3.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 10 | | biid 261 |
. . . . . . 7
⊢
((∀𝑣 ∈
{𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤))) |
| 11 | 1, 9, 3, 10, 2 | lubeldm 18398 |
. . . . . 6
⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤))))) |
| 12 | 11 | baibd 539 |
. . . . 5
⊢ ((𝜑 ∧ {𝑥, 𝑦} ⊆ 𝐵) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)))) |
| 13 | 8, 12 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ ∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)))) |
| 14 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐾 ∈ 𝑉) |
| 15 | 1, 9, 4, 14, 6, 7 | joinval2lem 18425 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
| 16 | 15 | reubidv 3398 |
. . . . 5
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
| 17 | 16 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃!𝑧 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑧 ∧ ∀𝑤 ∈ 𝐵 (∀𝑣 ∈ {𝑥, 𝑦}𝑣 ≤ 𝑤 → 𝑧 ≤ 𝑤)) ↔ ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
| 18 | 13, 17 | bitrd 279 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
| 19 | 18 | 2ralbidva 3219 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 {𝑥, 𝑦} ∈ dom 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |
| 20 | 5, 19 | bitrd 279 |
1
⊢ (𝜑 → (dom ∨ = (𝐵 × 𝐵) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃!𝑧 ∈ 𝐵 ((𝑥 ≤ 𝑧 ∧ 𝑦 ≤ 𝑧) ∧ ∀𝑤 ∈ 𝐵 ((𝑥 ≤ 𝑤 ∧ 𝑦 ≤ 𝑤) → 𝑧 ≤ 𝑤)))) |