| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joineu | Structured version Visualization version GIF version | ||
| Description: Uniqueness of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| joinval2.l | ⊢ ≤ = (le‘𝐾) |
| joinval2.j | ⊢ ∨ = (join‘𝐾) |
| joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| joinlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| Ref | Expression |
|---|---|
| joineu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinlem.e | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) | |
| 2 | eqid 2731 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | joinval2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 4 | joinval2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 5 | joinval2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | joinval2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 2, 3, 4, 5, 6 | joindef 18280 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom (lub‘𝐾))) |
| 8 | joinval2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 9 | joinval2.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 10 | biid 261 | . . . . . 6 ⊢ ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
| 11 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → 𝐾 ∈ 𝑉) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → {𝑋, 𝑌} ∈ dom (lub‘𝐾)) | |
| 13 | 8, 9, 2, 10, 11, 12 | lubeu 18259 | . . . . 5 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
| 14 | 13 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom (lub‘𝐾) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
| 15 | 8, 9, 3, 4, 5, 6 | joinval2lem 18284 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 16 | 5, 6, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 17 | 16 | reubidv 3362 | . . . 4 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 18 | 14, 17 | sylibd 239 | . . 3 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom (lub‘𝐾) → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 19 | 7, 18 | sylbid 240 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 20 | 1, 19 | mpd 15 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 {cpr 4575 〈cop 4579 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 Basecbs 17120 lecple 17168 lubclub 18215 joincjn 18217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-oprab 7350 df-lub 18250 df-join 18252 |
| This theorem is referenced by: joinlem 18287 |
| Copyright terms: Public domain | W3C validator |