Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joineu | Structured version Visualization version GIF version |
Description: Uniqueness of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
joinval2.l | ⊢ ≤ = (le‘𝐾) |
joinval2.j | ⊢ ∨ = (join‘𝐾) |
joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
joinlem.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
Ref | Expression |
---|---|
joineu | ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinlem.e | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) | |
2 | eqid 2738 | . . . 4 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | joinval2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
4 | joinval2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
5 | joinval2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | joinval2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | 2, 3, 4, 5, 6 | joindef 18094 | . . 3 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom (lub‘𝐾))) |
8 | joinval2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
9 | joinval2.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
10 | biid 260 | . . . . . 6 ⊢ ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
11 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → 𝐾 ∈ 𝑉) |
12 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → {𝑋, 𝑌} ∈ dom (lub‘𝐾)) | |
13 | 8, 9, 2, 10, 11, 12 | lubeu 18073 | . . . . 5 ⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) |
14 | 13 | ex 413 | . . . 4 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom (lub‘𝐾) → ∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
15 | 8, 9, 3, 4, 5, 6 | joinval2lem 18098 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
16 | 5, 6, 15 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
17 | 16 | reubidv 3323 | . . . 4 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
18 | 14, 17 | sylibd 238 | . . 3 ⊢ (𝜑 → ({𝑋, 𝑌} ∈ dom (lub‘𝐾) → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
19 | 7, 18 | sylbid 239 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
20 | 1, 19 | mpd 15 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 {cpr 4563 〈cop 4567 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 Basecbs 16912 lecple 16969 lubclub 18027 joincjn 18029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-oprab 7279 df-lub 18064 df-join 18066 |
This theorem is referenced by: joinlem 18101 |
Copyright terms: Public domain | W3C validator |