Step | Hyp | Ref
| Expression |
1 | | joinlem.e |
. 2
β’ (π β β¨π, πβ© β dom β¨ ) |
2 | | eqid 2730 |
. . . 4
β’
(lubβπΎ) =
(lubβπΎ) |
3 | | joinval2.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
4 | | joinval2.k |
. . . 4
β’ (π β πΎ β π) |
5 | | joinval2.x |
. . . 4
β’ (π β π β π΅) |
6 | | joinval2.y |
. . . 4
β’ (π β π β π΅) |
7 | 2, 3, 4, 5, 6 | joindef 18335 |
. . 3
β’ (π β (β¨π, πβ© β dom β¨ β {π, π} β dom (lubβπΎ))) |
8 | | joinval2.b |
. . . . . 6
β’ π΅ = (BaseβπΎ) |
9 | | joinval2.l |
. . . . . 6
β’ β€ =
(leβπΎ) |
10 | | biid 260 |
. . . . . 6
β’
((βπ¦ β
{π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§)) β (βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§))) |
11 | 4 | adantr 479 |
. . . . . 6
β’ ((π β§ {π, π} β dom (lubβπΎ)) β πΎ β π) |
12 | | simpr 483 |
. . . . . 6
β’ ((π β§ {π, π} β dom (lubβπΎ)) β {π, π} β dom (lubβπΎ)) |
13 | 8, 9, 2, 10, 11, 12 | lubeu 18314 |
. . . . 5
β’ ((π β§ {π, π} β dom (lubβπΎ)) β β!π₯ β π΅ (βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§))) |
14 | 13 | ex 411 |
. . . 4
β’ (π β ({π, π} β dom (lubβπΎ) β β!π₯ β π΅ (βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§)))) |
15 | 8, 9, 3, 4, 5, 6 | joinval2lem 18339 |
. . . . . 6
β’ ((π β π΅ β§ π β π΅) β ((βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§)) β ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |
16 | 5, 6, 15 | syl2anc 582 |
. . . . 5
β’ (π β ((βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§)) β ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |
17 | 16 | reubidv 3392 |
. . . 4
β’ (π β (β!π₯ β π΅ (βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§)) β β!π₯ β π΅ ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |
18 | 14, 17 | sylibd 238 |
. . 3
β’ (π β ({π, π} β dom (lubβπΎ) β β!π₯ β π΅ ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |
19 | 7, 18 | sylbid 239 |
. 2
β’ (π β (β¨π, πβ© β dom β¨ β β!π₯ β π΅ ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |
20 | 1, 19 | mpd 15 |
1
β’ (π β β!π₯ β π΅ ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§))) |