MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joineu Structured version   Visualization version   GIF version

Theorem joineu 18305
Description: Uniqueness of join of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
joinlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joineu (𝜑 → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝐾,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem joineu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 joinlem.e . 2 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
2 eqid 2729 . . . 4 (lub‘𝐾) = (lub‘𝐾)
3 joinval2.j . . . 4 = (join‘𝐾)
4 joinval2.k . . . 4 (𝜑𝐾𝑉)
5 joinval2.x . . . 4 (𝜑𝑋𝐵)
6 joinval2.y . . . 4 (𝜑𝑌𝐵)
72, 3, 4, 5, 6joindef 18299 . . 3 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom (lub‘𝐾)))
8 joinval2.b . . . . . 6 𝐵 = (Base‘𝐾)
9 joinval2.l . . . . . 6 = (le‘𝐾)
10 biid 261 . . . . . 6 ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)))
114adantr 480 . . . . . 6 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → 𝐾𝑉)
12 simpr 484 . . . . . 6 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → {𝑋, 𝑌} ∈ dom (lub‘𝐾))
138, 9, 2, 10, 11, 12lubeu 18278 . . . . 5 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom (lub‘𝐾)) → ∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)))
1413ex 412 . . . 4 (𝜑 → ({𝑋, 𝑌} ∈ dom (lub‘𝐾) → ∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))))
158, 9, 3, 4, 5, 6joinval2lem 18303 . . . . . 6 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
165, 6, 15syl2anc 584 . . . . 5 (𝜑 → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1716reubidv 3363 . . . 4 (𝜑 → (∃!𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1814, 17sylibd 239 . . 3 (𝜑 → ({𝑋, 𝑌} ∈ dom (lub‘𝐾) → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
197, 18sylbid 240 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
201, 19mpd 15 1 (𝜑 → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  {cpr 4581  cop 4585   class class class wbr 5095  dom cdm 5623  cfv 6486  Basecbs 17139  lecple 17187  lubclub 18234  joincjn 18236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-oprab 7357  df-lub 18269  df-join 18271
This theorem is referenced by:  joinlem  18306
  Copyright terms: Public domain W3C validator