| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joindmss | Structured version Visualization version GIF version | ||
| Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| joindmss.b | ⊢ 𝐵 = (Base‘𝐾) |
| joindmss.j | ⊢ ∨ = (join‘𝐾) |
| joindmss.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| joindmss | ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5768 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)} | |
| 2 | joindmss.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 4 | joindmss.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 5 | 3, 4 | joindm 18297 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
| 7 | 6 | releqd 5726 | . . 3 ⊢ (𝜑 → (Rel dom ∨ ↔ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)})) |
| 8 | 1, 7 | mpbiri 258 | . 2 ⊢ (𝜑 → Rel dom ∨ ) |
| 9 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ V) |
| 11 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ V) |
| 13 | 3, 4, 2, 10, 12 | joindef 18298 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
| 14 | joindmss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | eqid 2729 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 16 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → 𝐾 ∈ 𝑉) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)) | |
| 18 | 14, 15, 3, 16, 17 | lubelss 18276 | . . . . 5 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵) |
| 19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵)) |
| 20 | 9, 11 | prss 4774 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
| 21 | opelxpi 5660 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) | |
| 22 | 20, 21 | sylbir 235 | . . . 4 ⊢ ({𝑥, 𝑦} ⊆ 𝐵 → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) |
| 23 | 19, 22 | syl6 35 | . . 3 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
| 24 | 13, 23 | sylbid 240 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
| 25 | 8, 24 | relssdv 5735 | 1 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {cpr 4581 〈cop 4585 {copab 5157 × cxp 5621 dom cdm 5623 Rel wrel 5628 ‘cfv 6486 Basecbs 17138 lecple 17186 lubclub 18233 joincjn 18235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-oprab 7357 df-lub 18268 df-join 18270 |
| This theorem is referenced by: clatl 18432 joindm2 48940 |
| Copyright terms: Public domain | W3C validator |