Step | Hyp | Ref
| Expression |
1 | | relopabv 5819 |
. . 3
β’ Rel
{β¨π₯, π¦β© β£ {π₯, π¦} β dom (lubβπΎ)} |
2 | | joindmss.k |
. . . . 5
β’ (π β πΎ β π) |
3 | | eqid 2732 |
. . . . . 6
β’
(lubβπΎ) =
(lubβπΎ) |
4 | | joindmss.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
5 | 3, 4 | joindm 18324 |
. . . . 5
β’ (πΎ β π β dom β¨ = {β¨π₯, π¦β© β£ {π₯, π¦} β dom (lubβπΎ)}) |
6 | 2, 5 | syl 17 |
. . . 4
β’ (π β dom β¨ = {β¨π₯, π¦β© β£ {π₯, π¦} β dom (lubβπΎ)}) |
7 | 6 | releqd 5776 |
. . 3
β’ (π β (Rel dom β¨ β Rel
{β¨π₯, π¦β© β£ {π₯, π¦} β dom (lubβπΎ)})) |
8 | 1, 7 | mpbiri 257 |
. 2
β’ (π β Rel dom β¨ ) |
9 | | vex 3478 |
. . . . 5
β’ π₯ β V |
10 | 9 | a1i 11 |
. . . 4
β’ (π β π₯ β V) |
11 | | vex 3478 |
. . . . 5
β’ π¦ β V |
12 | 11 | a1i 11 |
. . . 4
β’ (π β π¦ β V) |
13 | 3, 4, 2, 10, 12 | joindef 18325 |
. . 3
β’ (π β (β¨π₯, π¦β© β dom β¨ β {π₯, π¦} β dom (lubβπΎ))) |
14 | | joindmss.b |
. . . . . 6
β’ π΅ = (BaseβπΎ) |
15 | | eqid 2732 |
. . . . . 6
β’
(leβπΎ) =
(leβπΎ) |
16 | 2 | adantr 481 |
. . . . . 6
β’ ((π β§ {π₯, π¦} β dom (lubβπΎ)) β πΎ β π) |
17 | | simpr 485 |
. . . . . 6
β’ ((π β§ {π₯, π¦} β dom (lubβπΎ)) β {π₯, π¦} β dom (lubβπΎ)) |
18 | 14, 15, 3, 16, 17 | lubelss 18303 |
. . . . 5
β’ ((π β§ {π₯, π¦} β dom (lubβπΎ)) β {π₯, π¦} β π΅) |
19 | 18 | ex 413 |
. . . 4
β’ (π β ({π₯, π¦} β dom (lubβπΎ) β {π₯, π¦} β π΅)) |
20 | 9, 11 | prss 4822 |
. . . . 5
β’ ((π₯ β π΅ β§ π¦ β π΅) β {π₯, π¦} β π΅) |
21 | | opelxpi 5712 |
. . . . 5
β’ ((π₯ β π΅ β§ π¦ β π΅) β β¨π₯, π¦β© β (π΅ Γ π΅)) |
22 | 20, 21 | sylbir 234 |
. . . 4
β’ ({π₯, π¦} β π΅ β β¨π₯, π¦β© β (π΅ Γ π΅)) |
23 | 19, 22 | syl6 35 |
. . 3
β’ (π β ({π₯, π¦} β dom (lubβπΎ) β β¨π₯, π¦β© β (π΅ Γ π΅))) |
24 | 13, 23 | sylbid 239 |
. 2
β’ (π β (β¨π₯, π¦β© β dom β¨ β β¨π₯, π¦β© β (π΅ Γ π΅))) |
25 | 8, 24 | relssdv 5786 |
1
β’ (π β dom β¨ β (π΅ Γ π΅)) |