![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joindmss | Structured version Visualization version GIF version |
Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
joindmss.b | ⊢ 𝐵 = (Base‘𝐾) |
joindmss.j | ⊢ ∨ = (join‘𝐾) |
joindmss.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
joindmss | ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5834 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)} | |
2 | joindmss.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
3 | eqid 2735 | . . . . . 6 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
4 | joindmss.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
5 | 3, 4 | joindm 18433 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
7 | 6 | releqd 5791 | . . 3 ⊢ (𝜑 → (Rel dom ∨ ↔ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)})) |
8 | 1, 7 | mpbiri 258 | . 2 ⊢ (𝜑 → Rel dom ∨ ) |
9 | vex 3482 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ V) |
11 | vex 3482 | . . . . 5 ⊢ 𝑦 ∈ V | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ V) |
13 | 3, 4, 2, 10, 12 | joindef 18434 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
14 | joindmss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
15 | eqid 2735 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
16 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → 𝐾 ∈ 𝑉) |
17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)) | |
18 | 14, 15, 3, 16, 17 | lubelss 18412 | . . . . 5 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵) |
19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵)) |
20 | 9, 11 | prss 4825 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
21 | opelxpi 5726 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) | |
22 | 20, 21 | sylbir 235 | . . . 4 ⊢ ({𝑥, 𝑦} ⊆ 𝐵 → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) |
23 | 19, 22 | syl6 35 | . . 3 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
24 | 13, 23 | sylbid 240 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
25 | 8, 24 | relssdv 5801 | 1 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 {cpr 4633 〈cop 4637 {copab 5210 × cxp 5687 dom cdm 5689 Rel wrel 5694 ‘cfv 6563 Basecbs 17245 lecple 17305 lubclub 18367 joincjn 18369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-oprab 7435 df-lub 18404 df-join 18406 |
This theorem is referenced by: clatl 18566 joindm2 48765 |
Copyright terms: Public domain | W3C validator |