| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joindmss | Structured version Visualization version GIF version | ||
| Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| joindmss.b | ⊢ 𝐵 = (Base‘𝐾) |
| joindmss.j | ⊢ ∨ = (join‘𝐾) |
| joindmss.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| joindmss | ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5787 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)} | |
| 2 | joindmss.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 4 | joindmss.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 5 | 3, 4 | joindm 18341 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
| 7 | 6 | releqd 5744 | . . 3 ⊢ (𝜑 → (Rel dom ∨ ↔ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)})) |
| 8 | 1, 7 | mpbiri 258 | . 2 ⊢ (𝜑 → Rel dom ∨ ) |
| 9 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ V) |
| 11 | vex 3454 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ V) |
| 13 | 3, 4, 2, 10, 12 | joindef 18342 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
| 14 | joindmss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | eqid 2730 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 16 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → 𝐾 ∈ 𝑉) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)) | |
| 18 | 14, 15, 3, 16, 17 | lubelss 18320 | . . . . 5 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵) |
| 19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵)) |
| 20 | 9, 11 | prss 4787 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
| 21 | opelxpi 5678 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) | |
| 22 | 20, 21 | sylbir 235 | . . . 4 ⊢ ({𝑥, 𝑦} ⊆ 𝐵 → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) |
| 23 | 19, 22 | syl6 35 | . . 3 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
| 24 | 13, 23 | sylbid 240 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
| 25 | 8, 24 | relssdv 5754 | 1 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 {cpr 4594 〈cop 4598 {copab 5172 × cxp 5639 dom cdm 5641 Rel wrel 5646 ‘cfv 6514 Basecbs 17186 lecple 17234 lubclub 18277 joincjn 18279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-oprab 7394 df-lub 18312 df-join 18314 |
| This theorem is referenced by: clatl 18474 joindm2 48960 |
| Copyright terms: Public domain | W3C validator |