| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joindmss | Structured version Visualization version GIF version | ||
| Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018.) |
| Ref | Expression |
|---|---|
| joindmss.b | ⊢ 𝐵 = (Base‘𝐾) |
| joindmss.j | ⊢ ∨ = (join‘𝐾) |
| joindmss.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| joindmss | ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5797 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)} | |
| 2 | joindmss.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 3 | eqid 2734 | . . . . . 6 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 4 | joindmss.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 5 | 3, 4 | joindm 18370 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
| 7 | 6 | releqd 5754 | . . 3 ⊢ (𝜑 → (Rel dom ∨ ↔ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)})) |
| 8 | 1, 7 | mpbiri 258 | . 2 ⊢ (𝜑 → Rel dom ∨ ) |
| 9 | vex 3461 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ V) |
| 11 | vex 3461 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ V) |
| 13 | 3, 4, 2, 10, 12 | joindef 18371 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
| 14 | joindmss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | eqid 2734 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 16 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → 𝐾 ∈ 𝑉) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)) | |
| 18 | 14, 15, 3, 16, 17 | lubelss 18349 | . . . . 5 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵) |
| 19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵)) |
| 20 | 9, 11 | prss 4793 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
| 21 | opelxpi 5688 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) | |
| 22 | 20, 21 | sylbir 235 | . . . 4 ⊢ ({𝑥, 𝑦} ⊆ 𝐵 → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) |
| 23 | 19, 22 | syl6 35 | . . 3 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
| 24 | 13, 23 | sylbid 240 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
| 25 | 8, 24 | relssdv 5764 | 1 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ⊆ wss 3924 {cpr 4601 〈cop 4605 {copab 5178 × cxp 5649 dom cdm 5651 Rel wrel 5656 ‘cfv 6527 Basecbs 17213 lecple 17263 lubclub 18306 joincjn 18308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-oprab 7403 df-lub 18341 df-join 18343 |
| This theorem is referenced by: clatl 18503 joindm2 48821 |
| Copyright terms: Public domain | W3C validator |