MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joindmss Structured version   Visualization version   GIF version

Theorem joindmss 18328
Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joindmss.b 𝐡 = (Baseβ€˜πΎ)
joindmss.j ∨ = (joinβ€˜πΎ)
joindmss.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
Assertion
Ref Expression
joindmss (πœ‘ β†’ dom ∨ βŠ† (𝐡 Γ— 𝐡))

Proof of Theorem joindmss
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5819 . . 3 Rel {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ)}
2 joindmss.k . . . . 5 (πœ‘ β†’ 𝐾 ∈ 𝑉)
3 eqid 2732 . . . . . 6 (lubβ€˜πΎ) = (lubβ€˜πΎ)
4 joindmss.j . . . . . 6 ∨ = (joinβ€˜πΎ)
53, 4joindm 18324 . . . . 5 (𝐾 ∈ 𝑉 β†’ dom ∨ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ)})
62, 5syl 17 . . . 4 (πœ‘ β†’ dom ∨ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ)})
76releqd 5776 . . 3 (πœ‘ β†’ (Rel dom ∨ ↔ Rel {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ)}))
81, 7mpbiri 257 . 2 (πœ‘ β†’ Rel dom ∨ )
9 vex 3478 . . . . 5 π‘₯ ∈ V
109a1i 11 . . . 4 (πœ‘ β†’ π‘₯ ∈ V)
11 vex 3478 . . . . 5 𝑦 ∈ V
1211a1i 11 . . . 4 (πœ‘ β†’ 𝑦 ∈ V)
133, 4, 2, 10, 12joindef 18325 . . 3 (πœ‘ β†’ (⟨π‘₯, π‘¦βŸ© ∈ dom ∨ ↔ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ)))
14 joindmss.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
15 eqid 2732 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
162adantr 481 . . . . . 6 ((πœ‘ ∧ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ)) β†’ 𝐾 ∈ 𝑉)
17 simpr 485 . . . . . 6 ((πœ‘ ∧ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ)) β†’ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ))
1814, 15, 3, 16, 17lubelss 18303 . . . . 5 ((πœ‘ ∧ {π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ)) β†’ {π‘₯, 𝑦} βŠ† 𝐡)
1918ex 413 . . . 4 (πœ‘ β†’ ({π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ) β†’ {π‘₯, 𝑦} βŠ† 𝐡))
209, 11prss 4822 . . . . 5 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ↔ {π‘₯, 𝑦} βŠ† 𝐡)
21 opelxpi 5712 . . . . 5 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) β†’ ⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡))
2220, 21sylbir 234 . . . 4 ({π‘₯, 𝑦} βŠ† 𝐡 β†’ ⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡))
2319, 22syl6 35 . . 3 (πœ‘ β†’ ({π‘₯, 𝑦} ∈ dom (lubβ€˜πΎ) β†’ ⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡)))
2413, 23sylbid 239 . 2 (πœ‘ β†’ (⟨π‘₯, π‘¦βŸ© ∈ dom ∨ β†’ ⟨π‘₯, π‘¦βŸ© ∈ (𝐡 Γ— 𝐡)))
258, 24relssdv 5786 1 (πœ‘ β†’ dom ∨ βŠ† (𝐡 Γ— 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βŠ† wss 3947  {cpr 4629  βŸ¨cop 4633  {copab 5209   Γ— cxp 5673  dom cdm 5675  Rel wrel 5680  β€˜cfv 6540  Basecbs 17140  lecple 17200  lubclub 18258  joincjn 18260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-oprab 7409  df-lub 18295  df-join 18297
This theorem is referenced by:  clatl  18457  joindm2  47554
  Copyright terms: Public domain W3C validator