Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joindmss | Structured version Visualization version GIF version |
Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
joindmss.b | ⊢ 𝐵 = (Base‘𝐾) |
joindmss.j | ⊢ ∨ = (join‘𝐾) |
joindmss.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
Ref | Expression |
---|---|
joindmss | ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5720 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)} | |
2 | joindmss.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
3 | eqid 2738 | . . . . . 6 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
4 | joindmss.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
5 | 3, 4 | joindm 18008 | . . . . 5 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝜑 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}) |
7 | 6 | releqd 5679 | . . 3 ⊢ (𝜑 → (Rel dom ∨ ↔ Rel {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)})) |
8 | 1, 7 | mpbiri 257 | . 2 ⊢ (𝜑 → Rel dom ∨ ) |
9 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑥 ∈ V) |
11 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑦 ∈ V) |
13 | 3, 4, 2, 10, 12 | joindef 18009 | . . 3 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾))) |
14 | joindmss.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
15 | eqid 2738 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
16 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → 𝐾 ∈ 𝑉) |
17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾)) | |
18 | 14, 15, 3, 16, 17 | lubelss 17987 | . . . . 5 ⊢ ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵) |
19 | 18 | ex 412 | . . . 4 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵)) |
20 | 9, 11 | prss 4750 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵) |
21 | opelxpi 5617 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) | |
22 | 20, 21 | sylbir 234 | . . . 4 ⊢ ({𝑥, 𝑦} ⊆ 𝐵 → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵)) |
23 | 19, 22 | syl6 35 | . . 3 ⊢ (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
24 | 13, 23 | sylbid 239 | . 2 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ dom ∨ → 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐵))) |
25 | 8, 24 | relssdv 5687 | 1 ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {cpr 4560 〈cop 4564 {copab 5132 × cxp 5578 dom cdm 5580 Rel wrel 5585 ‘cfv 6418 Basecbs 16840 lecple 16895 lubclub 17942 joincjn 17944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-oprab 7259 df-lub 17979 df-join 17981 |
This theorem is referenced by: clatl 18141 joindm2 46150 |
Copyright terms: Public domain | W3C validator |