MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joindmss Structured version   Visualization version   GIF version

Theorem joindmss 18374
Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joindmss.b 𝐵 = (Base‘𝐾)
joindmss.j = (join‘𝐾)
joindmss.k (𝜑𝐾𝑉)
Assertion
Ref Expression
joindmss (𝜑 → dom ⊆ (𝐵 × 𝐵))

Proof of Theorem joindmss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5797 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}
2 joindmss.k . . . . 5 (𝜑𝐾𝑉)
3 eqid 2734 . . . . . 6 (lub‘𝐾) = (lub‘𝐾)
4 joindmss.j . . . . . 6 = (join‘𝐾)
53, 4joindm 18370 . . . . 5 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)})
62, 5syl 17 . . . 4 (𝜑 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)})
76releqd 5754 . . 3 (𝜑 → (Rel dom ↔ Rel {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom (lub‘𝐾)}))
81, 7mpbiri 258 . 2 (𝜑 → Rel dom )
9 vex 3461 . . . . 5 𝑥 ∈ V
109a1i 11 . . . 4 (𝜑𝑥 ∈ V)
11 vex 3461 . . . . 5 𝑦 ∈ V
1211a1i 11 . . . 4 (𝜑𝑦 ∈ V)
133, 4, 2, 10, 12joindef 18371 . . 3 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom ↔ {𝑥, 𝑦} ∈ dom (lub‘𝐾)))
14 joindmss.b . . . . . 6 𝐵 = (Base‘𝐾)
15 eqid 2734 . . . . . 6 (le‘𝐾) = (le‘𝐾)
162adantr 480 . . . . . 6 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → 𝐾𝑉)
17 simpr 484 . . . . . 6 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ∈ dom (lub‘𝐾))
1814, 15, 3, 16, 17lubelss 18349 . . . . 5 ((𝜑 ∧ {𝑥, 𝑦} ∈ dom (lub‘𝐾)) → {𝑥, 𝑦} ⊆ 𝐵)
1918ex 412 . . . 4 (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → {𝑥, 𝑦} ⊆ 𝐵))
209, 11prss 4793 . . . . 5 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
21 opelxpi 5688 . . . . 5 ((𝑥𝐵𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
2220, 21sylbir 235 . . . 4 ({𝑥, 𝑦} ⊆ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
2319, 22syl6 35 . . 3 (𝜑 → ({𝑥, 𝑦} ∈ dom (lub‘𝐾) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵)))
2413, 23sylbid 240 . 2 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ dom → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵)))
258, 24relssdv 5764 1 (𝜑 → dom ⊆ (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  wss 3924  {cpr 4601  cop 4605  {copab 5178   × cxp 5649  dom cdm 5651  Rel wrel 5656  cfv 6527  Basecbs 17213  lecple 17263  lubclub 18306  joincjn 18308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-oprab 7403  df-lub 18341  df-join 18343
This theorem is referenced by:  clatl  18503  joindm2  48821
  Copyright terms: Public domain W3C validator