MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval2 Structured version   Visualization version   GIF version

Theorem joinval2 17728
Description: Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
joinval2 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝐾,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem joinval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 joinval2.j . . 3 = (join‘𝐾)
3 joinval2.k . . 3 (𝜑𝐾𝑉)
4 joinval2.x . . 3 (𝜑𝑋𝐵)
5 joinval2.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5joinval 17724 . 2 (𝜑 → (𝑋 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌}))
7 joinval2.b . . 3 𝐵 = (Base‘𝐾)
8 joinval2.l . . 3 = (le‘𝐾)
9 biid 264 . . 3 ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)))
104, 5prssd 4707 . . 3 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
117, 8, 1, 9, 3, 10lubval 17703 . 2 (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) = (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))))
127, 8, 2, 3, 4, 5joinval2lem 17727 . . . 4 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1312riotabidv 7123 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
144, 5, 13syl2anc 587 . 2 (𝜑 → (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
156, 11, 143eqtrd 2777 1 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  wral 3053  {cpr 4515   class class class wbr 5027  cfv 6333  crio 7120  (class class class)co 7164  Basecbs 16579  lecple 16668  lubclub 17661  joincjn 17663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-lub 17693  df-join 17695
This theorem is referenced by:  joinlem  17730
  Copyright terms: Public domain W3C validator