Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(lubβπΎ) =
(lubβπΎ) |
2 | | joinval2.j |
. . 3
β’ β¨ =
(joinβπΎ) |
3 | | joinval2.k |
. . 3
β’ (π β πΎ β π) |
4 | | joinval2.x |
. . 3
β’ (π β π β π΅) |
5 | | joinval2.y |
. . 3
β’ (π β π β π΅) |
6 | 1, 2, 3, 4, 5 | joinval 18334 |
. 2
β’ (π β (π β¨ π) = ((lubβπΎ)β{π, π})) |
7 | | joinval2.b |
. . 3
β’ π΅ = (BaseβπΎ) |
8 | | joinval2.l |
. . 3
β’ β€ =
(leβπΎ) |
9 | | biid 260 |
. . 3
β’
((βπ¦ β
{π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§)) β (βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§))) |
10 | 4, 5 | prssd 4825 |
. . 3
β’ (π β {π, π} β π΅) |
11 | 7, 8, 1, 9, 3, 10 | lubval 18313 |
. 2
β’ (π β ((lubβπΎ)β{π, π}) = (β©π₯ β π΅ (βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§)))) |
12 | 7, 8, 2, 3, 4, 5 | joinval2lem 18337 |
. . . 4
β’ ((π β π΅ β§ π β π΅) β ((βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§)) β ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |
13 | 12 | riotabidv 7369 |
. . 3
β’ ((π β π΅ β§ π β π΅) β (β©π₯ β π΅ (βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§))) = (β©π₯ β π΅ ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |
14 | 4, 5, 13 | syl2anc 584 |
. 2
β’ (π β (β©π₯ β π΅ (βπ¦ β {π, π}π¦ β€ π₯ β§ βπ§ β π΅ (βπ¦ β {π, π}π¦ β€ π§ β π₯ β€ π§))) = (β©π₯ β π΅ ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |
15 | 6, 11, 14 | 3eqtrd 2776 |
1
β’ (π β (π β¨ π) = (β©π₯ β π΅ ((π β€ π₯ β§ π β€ π₯) β§ βπ§ β π΅ ((π β€ π§ β§ π β€ π§) β π₯ β€ π§)))) |