MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval2 Structured version   Visualization version   GIF version

Theorem joinval2 18347
Description: Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
joinval2 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝐾,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem joinval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 joinval2.j . . 3 = (join‘𝐾)
3 joinval2.k . . 3 (𝜑𝐾𝑉)
4 joinval2.x . . 3 (𝜑𝑋𝐵)
5 joinval2.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5joinval 18343 . 2 (𝜑 → (𝑋 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌}))
7 joinval2.b . . 3 𝐵 = (Base‘𝐾)
8 joinval2.l . . 3 = (le‘𝐾)
9 biid 261 . . 3 ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)))
104, 5prssd 4789 . . 3 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
117, 8, 1, 9, 3, 10lubval 18322 . 2 (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) = (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))))
127, 8, 2, 3, 4, 5joinval2lem 18346 . . . 4 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1312riotabidv 7349 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
144, 5, 13syl2anc 584 . 2 (𝜑 → (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
156, 11, 143eqtrd 2769 1 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {cpr 4594   class class class wbr 5110  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  lecple 17234  lubclub 18277  joincjn 18279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-lub 18312  df-join 18314
This theorem is referenced by:  joinlem  18349
  Copyright terms: Public domain W3C validator