| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joinval2 | Structured version Visualization version GIF version | ||
| Description: Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
| Ref | Expression |
|---|---|
| joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
| joinval2.l | ⊢ ≤ = (le‘𝐾) |
| joinval2.j | ⊢ ∨ = (join‘𝐾) |
| joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| joinval2 | ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 2 | joinval2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | joinval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 4 | joinval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | joinval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | joinval 18281 | . 2 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌})) |
| 7 | joinval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | joinval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 9 | biid 261 | . . 3 ⊢ ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
| 10 | 4, 5 | prssd 4773 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝐵) |
| 11 | 7, 8, 1, 9, 3, 10 | lubval 18260 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
| 12 | 7, 8, 2, 3, 4, 5 | joinval2lem 18284 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 13 | 12 | riotabidv 7308 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 14 | 4, 5, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 15 | 6, 11, 14 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {cpr 4579 class class class wbr 5092 ‘cfv 6482 ℩crio 7305 (class class class)co 7349 Basecbs 17120 lecple 17168 lubclub 18215 joincjn 18217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-lub 18250 df-join 18252 |
| This theorem is referenced by: joinlem 18287 |
| Copyright terms: Public domain | W3C validator |