![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joinval2 | Structured version Visualization version GIF version |
Description: Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
Ref | Expression |
---|---|
joinval2.b | ⊢ 𝐵 = (Base‘𝐾) |
joinval2.l | ⊢ ≤ = (le‘𝐾) |
joinval2.j | ⊢ ∨ = (join‘𝐾) |
joinval2.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joinval2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
joinval2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
joinval2 | ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
2 | joinval2.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | joinval2.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | joinval2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | joinval2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | joinval 18435 | . 2 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌})) |
7 | joinval2.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
8 | joinval2.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
9 | biid 261 | . . 3 ⊢ ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | |
10 | 4, 5 | prssd 4827 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝐵) |
11 | 7, 8, 1, 9, 3, 10 | lubval 18414 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) = (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)))) |
12 | 7, 8, 2, 3, 4, 5 | joinval2lem 18438 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
13 | 12 | riotabidv 7390 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
14 | 4, 5, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
15 | 6, 11, 14 | 3eqtrd 2779 | 1 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {cpr 4633 class class class wbr 5148 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 Basecbs 17245 lecple 17305 lubclub 18367 joincjn 18369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-lub 18404 df-join 18406 |
This theorem is referenced by: joinlem 18441 |
Copyright terms: Public domain | W3C validator |