MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinlem Structured version   Visualization version   GIF version

Theorem joinlem 18428
Description: Lemma for join properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
joinlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joinlem (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Distinct variable groups:   𝑧,𝐵   𝑧,   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem joinlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 joinval2.b . . . . 5 𝐵 = (Base‘𝐾)
2 joinval2.l . . . . 5 = (le‘𝐾)
3 joinval2.j . . . . 5 = (join‘𝐾)
4 joinval2.k . . . . 5 (𝜑𝐾𝑉)
5 joinval2.x . . . . 5 (𝜑𝑋𝐵)
6 joinval2.y . . . . 5 (𝜑𝑌𝐵)
7 joinlem.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
81, 2, 3, 4, 5, 6, 7joineu 18427 . . . 4 (𝜑 → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
9 riotasbc 7406 . . . 4 (∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) → [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
108, 9syl 17 . . 3 (𝜑[(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
111, 2, 3, 4, 5, 6joinval2 18426 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1211sbceq1d 3793 . . 3 (𝜑 → ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1310, 12mpbird 257 . 2 (𝜑[(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
14 ovex 7464 . . 3 (𝑋 𝑌) ∈ V
15 breq2 5147 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑋 𝑥𝑋 (𝑋 𝑌)))
16 breq2 5147 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑌 𝑥𝑌 (𝑋 𝑌)))
1715, 16anbi12d 632 . . . 4 (𝑥 = (𝑋 𝑌) → ((𝑋 𝑥𝑌 𝑥) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌))))
18 breq1 5146 . . . . . 6 (𝑥 = (𝑋 𝑌) → (𝑥 𝑧 ↔ (𝑋 𝑌) 𝑧))
1918imbi2d 340 . . . . 5 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2019ralbidv 3178 . . . 4 (𝑥 = (𝑋 𝑌) → (∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2117, 20anbi12d 632 . . 3 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧))))
2214, 21sbcie 3830 . 2 ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2313, 22sylib 218 1 (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  ∃!wreu 3378  [wsbc 3788  cop 4632   class class class wbr 5143  dom cdm 5685  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-lub 18391  df-join 18393
This theorem is referenced by:  lejoin1  18429  lejoin2  18430  joinle  18431
  Copyright terms: Public domain W3C validator