| Step | Hyp | Ref
| Expression |
| 1 | | joinval2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | joinval2.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 3 | | joinval2.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 4 | | joinval2.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| 5 | | joinval2.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 6 | | joinval2.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 7 | | joinlem.e |
. . . . 5
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | joineu 18427 |
. . . 4
⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 9 | | riotasbc 7406 |
. . . 4
⊢
(∃!𝑥 ∈
𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)) → [(℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 →
[(℩𝑥
∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 11 | 1, 2, 3, 4, 5, 6 | joinval2 18426 |
. . . 4
⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 12 | 11 | sbceq1d 3793 |
. . 3
⊢ (𝜑 → ([(𝑋 ∨ 𝑌) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ [(℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
| 13 | 10, 12 | mpbird 257 |
. 2
⊢ (𝜑 → [(𝑋 ∨ 𝑌) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
| 14 | | ovex 7464 |
. . 3
⊢ (𝑋 ∨ 𝑌) ∈ V |
| 15 | | breq2 5147 |
. . . . 5
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (𝑋 ≤ 𝑥 ↔ 𝑋 ≤ (𝑋 ∨ 𝑌))) |
| 16 | | breq2 5147 |
. . . . 5
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (𝑌 ≤ 𝑥 ↔ 𝑌 ≤ (𝑋 ∨ 𝑌))) |
| 17 | 15, 16 | anbi12d 632 |
. . . 4
⊢ (𝑥 = (𝑋 ∨ 𝑌) → ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
| 18 | | breq1 5146 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (𝑥 ≤ 𝑧 ↔ (𝑋 ∨ 𝑌) ≤ 𝑧)) |
| 19 | 18 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
| 20 | 19 | ralbidv 3178 |
. . . 4
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
| 21 | 17, 20 | anbi12d 632 |
. . 3
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧)))) |
| 22 | 14, 21 | sbcie 3830 |
. 2
⊢
([(𝑋 ∨ 𝑌) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
| 23 | 13, 22 | sylib 218 |
1
⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |