Step | Hyp | Ref
| Expression |
1 | | joinval2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | joinval2.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | joinval2.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
4 | | joinval2.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
5 | | joinval2.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
6 | | joinval2.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
7 | | joinlem.e |
. . . . 5
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
8 | 1, 2, 3, 4, 5, 6, 7 | joineu 18100 |
. . . 4
⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
9 | | riotasbc 7251 |
. . . 4
⊢
(∃!𝑥 ∈
𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)) → [(℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝜑 →
[(℩𝑥
∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
11 | 1, 2, 3, 4, 5, 6 | joinval2 18099 |
. . . 4
⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
12 | 11 | sbceq1d 3721 |
. . 3
⊢ (𝜑 → ([(𝑋 ∨ 𝑌) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ [(℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
13 | 10, 12 | mpbird 256 |
. 2
⊢ (𝜑 → [(𝑋 ∨ 𝑌) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
14 | | ovex 7308 |
. . 3
⊢ (𝑋 ∨ 𝑌) ∈ V |
15 | | breq2 5078 |
. . . . 5
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (𝑋 ≤ 𝑥 ↔ 𝑋 ≤ (𝑋 ∨ 𝑌))) |
16 | | breq2 5078 |
. . . . 5
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (𝑌 ≤ 𝑥 ↔ 𝑌 ≤ (𝑋 ∨ 𝑌))) |
17 | 15, 16 | anbi12d 631 |
. . . 4
⊢ (𝑥 = (𝑋 ∨ 𝑌) → ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ↔ (𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
18 | | breq1 5077 |
. . . . . 6
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (𝑥 ≤ 𝑧 ↔ (𝑋 ∨ 𝑌) ≤ 𝑧)) |
19 | 18 | imbi2d 341 |
. . . . 5
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
20 | 19 | ralbidv 3112 |
. . . 4
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧) ↔ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
21 | 17, 20 | anbi12d 631 |
. . 3
⊢ (𝑥 = (𝑋 ∨ 𝑌) → (((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧)))) |
22 | 14, 21 | sbcie 3759 |
. 2
⊢
([(𝑋 ∨ 𝑌) / 𝑥]((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |
23 | 13, 22 | sylib 217 |
1
⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) |