MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinlem Structured version   Visualization version   GIF version

Theorem joinlem 18287
Description: Lemma for join properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
joinlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joinlem (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Distinct variable groups:   𝑧,𝐵   𝑧,   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem joinlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 joinval2.b . . . . 5 𝐵 = (Base‘𝐾)
2 joinval2.l . . . . 5 = (le‘𝐾)
3 joinval2.j . . . . 5 = (join‘𝐾)
4 joinval2.k . . . . 5 (𝜑𝐾𝑉)
5 joinval2.x . . . . 5 (𝜑𝑋𝐵)
6 joinval2.y . . . . 5 (𝜑𝑌𝐵)
7 joinlem.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
81, 2, 3, 4, 5, 6, 7joineu 18286 . . . 4 (𝜑 → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
9 riotasbc 7324 . . . 4 (∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) → [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
108, 9syl 17 . . 3 (𝜑[(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
111, 2, 3, 4, 5, 6joinval2 18285 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1211sbceq1d 3747 . . 3 (𝜑 → ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1310, 12mpbird 257 . 2 (𝜑[(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
14 ovex 7382 . . 3 (𝑋 𝑌) ∈ V
15 breq2 5096 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑋 𝑥𝑋 (𝑋 𝑌)))
16 breq2 5096 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑌 𝑥𝑌 (𝑋 𝑌)))
1715, 16anbi12d 632 . . . 4 (𝑥 = (𝑋 𝑌) → ((𝑋 𝑥𝑌 𝑥) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌))))
18 breq1 5095 . . . . . 6 (𝑥 = (𝑋 𝑌) → (𝑥 𝑧 ↔ (𝑋 𝑌) 𝑧))
1918imbi2d 340 . . . . 5 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2019ralbidv 3152 . . . 4 (𝑥 = (𝑋 𝑌) → (∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2117, 20anbi12d 632 . . 3 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧))))
2214, 21sbcie 3784 . 2 ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2313, 22sylib 218 1 (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3341  [wsbc 3742  cop 4583   class class class wbr 5092  dom cdm 5619  cfv 6482  crio 7305  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-lub 18250  df-join 18252
This theorem is referenced by:  lejoin1  18288  lejoin2  18289  joinle  18290
  Copyright terms: Public domain W3C validator