MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinlem Structured version   Visualization version   GIF version

Theorem joinlem 18016
Description: Lemma for join properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
joinlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joinlem (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Distinct variable groups:   𝑧,𝐵   𝑧,   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem joinlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 joinval2.b . . . . 5 𝐵 = (Base‘𝐾)
2 joinval2.l . . . . 5 = (le‘𝐾)
3 joinval2.j . . . . 5 = (join‘𝐾)
4 joinval2.k . . . . 5 (𝜑𝐾𝑉)
5 joinval2.x . . . . 5 (𝜑𝑋𝐵)
6 joinval2.y . . . . 5 (𝜑𝑌𝐵)
7 joinlem.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
81, 2, 3, 4, 5, 6, 7joineu 18015 . . . 4 (𝜑 → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
9 riotasbc 7231 . . . 4 (∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) → [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
108, 9syl 17 . . 3 (𝜑[(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
111, 2, 3, 4, 5, 6joinval2 18014 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1211sbceq1d 3716 . . 3 (𝜑 → ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1310, 12mpbird 256 . 2 (𝜑[(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
14 ovex 7288 . . 3 (𝑋 𝑌) ∈ V
15 breq2 5074 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑋 𝑥𝑋 (𝑋 𝑌)))
16 breq2 5074 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑌 𝑥𝑌 (𝑋 𝑌)))
1715, 16anbi12d 630 . . . 4 (𝑥 = (𝑋 𝑌) → ((𝑋 𝑥𝑌 𝑥) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌))))
18 breq1 5073 . . . . . 6 (𝑥 = (𝑋 𝑌) → (𝑥 𝑧 ↔ (𝑋 𝑌) 𝑧))
1918imbi2d 340 . . . . 5 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2019ralbidv 3120 . . . 4 (𝑥 = (𝑋 𝑌) → (∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2117, 20anbi12d 630 . . 3 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧))))
2214, 21sbcie 3754 . 2 ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2313, 22sylib 217 1 (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  ∃!wreu 3065  [wsbc 3711  cop 4564   class class class wbr 5070  dom cdm 5580  cfv 6418  crio 7211  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-lub 17979  df-join 17981
This theorem is referenced by:  lejoin1  18017  lejoin2  18018  joinle  18019
  Copyright terms: Public domain W3C validator