MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinlem Structured version   Visualization version   GIF version

Theorem joinlem 17612
Description: Lemma for join properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
joinlem.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joinlem (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Distinct variable groups:   𝑧,𝐵   𝑧,   𝑧,𝐾   𝑧,𝑋   𝑧,𝑌
Allowed substitution hints:   𝜑(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem joinlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 joinval2.b . . . . 5 𝐵 = (Base‘𝐾)
2 joinval2.l . . . . 5 = (le‘𝐾)
3 joinval2.j . . . . 5 = (join‘𝐾)
4 joinval2.k . . . . 5 (𝜑𝐾𝑉)
5 joinval2.x . . . . 5 (𝜑𝑋𝐵)
6 joinval2.y . . . . 5 (𝜑𝑌𝐵)
7 joinlem.e . . . . 5 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
81, 2, 3, 4, 5, 6, 7joineu 17611 . . . 4 (𝜑 → ∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
9 riotasbc 7116 . . . 4 (∃!𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) → [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
108, 9syl 17 . . 3 (𝜑[(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
111, 2, 3, 4, 5, 6joinval2 17610 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1211sbceq1d 3752 . . 3 (𝜑 → ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ [(𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1310, 12mpbird 260 . 2 (𝜑[(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)))
14 ovex 7173 . . 3 (𝑋 𝑌) ∈ V
15 breq2 5046 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑋 𝑥𝑋 (𝑋 𝑌)))
16 breq2 5046 . . . . 5 (𝑥 = (𝑋 𝑌) → (𝑌 𝑥𝑌 (𝑋 𝑌)))
1715, 16anbi12d 633 . . . 4 (𝑥 = (𝑋 𝑌) → ((𝑋 𝑥𝑌 𝑥) ↔ (𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌))))
18 breq1 5045 . . . . . 6 (𝑥 = (𝑋 𝑌) → (𝑥 𝑧 ↔ (𝑋 𝑌) 𝑧))
1918imbi2d 344 . . . . 5 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2019ralbidv 3187 . . . 4 (𝑥 = (𝑋 𝑌) → (∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧) ↔ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2117, 20anbi12d 633 . . 3 (𝑥 = (𝑋 𝑌) → (((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧))))
2214, 21sbcie 3787 . 2 ([(𝑋 𝑌) / 𝑥]((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧)) ↔ ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
2313, 22sylib 221 1 (𝜑 → ((𝑋 (𝑋 𝑌) ∧ 𝑌 (𝑋 𝑌)) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → (𝑋 𝑌) 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  wral 3130  ∃!wreu 3132  [wsbc 3747  cop 4545   class class class wbr 5042  dom cdm 5532  cfv 6334  crio 7097  (class class class)co 7140  Basecbs 16474  lecple 16563  joincjn 17545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-lub 17575  df-join 17577
This theorem is referenced by:  lejoin1  17613  lejoin2  17614  joinle  17615
  Copyright terms: Public domain W3C validator