Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1 Structured version   Visualization version   GIF version

Theorem lcfl1 41516
Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.)
Hypotheses
Ref Expression
lcfl1.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl1.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl1 (𝜑 → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)

Proof of Theorem lcfl1
StepHypRef Expression
1 lcfl1.c . . 3 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
21lcfl1lem 41515 . 2 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
3 lcfl1.g . . 3 (𝜑𝐺𝐹)
43biantrurd 532 . 2 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))))
52, 4bitr4id 290 1 (𝜑 → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3420  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544
This theorem is referenced by:  lcfl2  41517  lcfl5  41520  lcfl5a  41521  lcfl6  41524  lcfl8  41526  lcfl8a  41527  lclkrlem2  41556
  Copyright terms: Public domain W3C validator