Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1 Structured version   Visualization version   GIF version

Theorem lcfl1 39433
Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.)
Hypotheses
Ref Expression
lcfl1.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl1.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl1 (𝜑 → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)

Proof of Theorem lcfl1
StepHypRef Expression
1 lcfl1.c . . 3 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
21lcfl1lem 39432 . 2 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
3 lcfl1.g . . 3 (𝜑𝐺𝐹)
43biantrurd 532 . 2 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))))
52, 4bitr4id 289 1 (𝜑 → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {crab 3067  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by:  lcfl2  39434  lcfl5  39437  lcfl5a  39438  lcfl6  39441  lcfl8  39443  lcfl8a  39444  lclkrlem2  39473
  Copyright terms: Public domain W3C validator