| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfl1 | Structured version Visualization version GIF version | ||
| Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| lcfl1.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lcfl1.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lcfl1 | ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcfl1.c | . . 3 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 2 | 1 | lcfl1lem 41529 | . 2 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 3 | lcfl1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 4 | 3 | biantrurd 532 | . 2 ⊢ (𝜑 → (( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺) ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)))) |
| 5 | 2, 4 | bitr4id 290 | 1 ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: lcfl2 41531 lcfl5 41534 lcfl5a 41535 lcfl6 41538 lcfl8 41540 lcfl8a 41541 lclkrlem2 41570 |
| Copyright terms: Public domain | W3C validator |