Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1 Structured version   Visualization version   GIF version

Theorem lcfl1 41449
Description: Property of a functional with a closed kernel. (Contributed by NM, 31-Dec-2014.)
Hypotheses
Ref Expression
lcfl1.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl1.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl1 (𝜑 → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   ,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)

Proof of Theorem lcfl1
StepHypRef Expression
1 lcfl1.c . . 3 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
21lcfl1lem 41448 . 2 (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
3 lcfl1.g . . 3 (𝜑𝐺𝐹)
43biantrurd 532 . 2 (𝜑 → (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))))
52, 4bitr4id 290 1 (𝜑 → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581
This theorem is referenced by:  lcfl2  41450  lcfl5  41453  lcfl5a  41454  lcfl6  41457  lcfl8  41459  lcfl8a  41460  lclkrlem2  41489
  Copyright terms: Public domain W3C validator