Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl2 Structured version   Visualization version   GIF version

Theorem lcfl2 40868
Description: Property of a functional with a closed kernel. (Contributed by NM, 1-Jan-2015.)
Hypotheses
Ref Expression
lcfl2.h 𝐻 = (LHypβ€˜πΎ)
lcfl2.o βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
lcfl2.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
lcfl2.v 𝑉 = (Baseβ€˜π‘ˆ)
lcfl2.f 𝐹 = (LFnlβ€˜π‘ˆ)
lcfl2.l 𝐿 = (LKerβ€˜π‘ˆ)
lcfl2.c 𝐢 = {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}
lcfl2.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
lcfl2.g (πœ‘ β†’ 𝐺 ∈ 𝐹)
Assertion
Ref Expression
lcfl2 (πœ‘ β†’ (𝐺 ∈ 𝐢 ↔ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) β‰  𝑉 ∨ (πΏβ€˜πΊ) = 𝑉)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐿   βŠ₯ ,𝑓
Allowed substitution hints:   πœ‘(𝑓)   𝐢(𝑓)   π‘ˆ(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑉(𝑓)   π‘Š(𝑓)

Proof of Theorem lcfl2
StepHypRef Expression
1 lcfl2.c . . 3 𝐢 = {𝑓 ∈ 𝐹 ∣ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜π‘“))) = (πΏβ€˜π‘“)}
2 lcfl2.g . . 3 (πœ‘ β†’ 𝐺 ∈ 𝐹)
31, 2lcfl1 40867 . 2 (πœ‘ β†’ (𝐺 ∈ 𝐢 ↔ ( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) = (πΏβ€˜πΊ)))
4 lcfl2.h . . 3 𝐻 = (LHypβ€˜πΎ)
5 lcfl2.o . . 3 βŠ₯ = ((ocHβ€˜πΎ)β€˜π‘Š)
6 lcfl2.u . . 3 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
7 lcfl2.v . . 3 𝑉 = (Baseβ€˜π‘ˆ)
8 lcfl2.f . . 3 𝐹 = (LFnlβ€˜π‘ˆ)
9 lcfl2.l . . 3 𝐿 = (LKerβ€˜π‘ˆ)
10 lcfl2.k . . 3 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
114, 5, 6, 7, 8, 9, 10, 2dochkrshp4 40764 . 2 (πœ‘ β†’ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) = (πΏβ€˜πΊ) ↔ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) β‰  𝑉 ∨ (πΏβ€˜πΊ) = 𝑉)))
123, 11bitrd 279 1 (πœ‘ β†’ (𝐺 ∈ 𝐢 ↔ (( βŠ₯ β€˜( βŠ₯ β€˜(πΏβ€˜πΊ))) β‰  𝑉 ∨ (πΏβ€˜πΊ) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  {crab 3424  β€˜cfv 6534  Basecbs 17149  LFnlclfn 38431  LKerclk 38459  HLchlt 38724  LHypclh 39359  DVecHcdvh 40453  ocHcoch 40722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-riotaBAD 38327
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-tpos 8207  df-undef 8254  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-0g 17392  df-proset 18256  df-poset 18274  df-plt 18291  df-lub 18307  df-glb 18308  df-join 18309  df-meet 18310  df-p0 18386  df-p1 18387  df-lat 18393  df-clat 18460  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-submnd 18710  df-grp 18862  df-minusg 18863  df-sbg 18864  df-subg 19046  df-cntz 19229  df-lsm 19552  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-dvr 20299  df-drng 20585  df-lmod 20704  df-lss 20775  df-lsp 20815  df-lvec 20947  df-lsatoms 38350  df-lshyp 38351  df-lfl 38432  df-lkr 38460  df-oposet 38550  df-ol 38552  df-oml 38553  df-covers 38640  df-ats 38641  df-atl 38672  df-cvlat 38696  df-hlat 38725  df-llines 38873  df-lplanes 38874  df-lvols 38875  df-lines 38876  df-psubsp 38878  df-pmap 38879  df-padd 39171  df-lhyp 39363  df-laut 39364  df-ldil 39479  df-ltrn 39480  df-trl 39534  df-tendo 40130  df-edring 40132  df-disoa 40404  df-dvech 40454  df-dib 40514  df-dic 40548  df-dih 40604  df-doch 40723
This theorem is referenced by:  lcfl3  40869  lcfl6  40875
  Copyright terms: Public domain W3C validator