Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl8 Structured version   Visualization version   GIF version

Theorem lcfl8 38506
Description: Property of a functional with a closed kernel. (Contributed by NM, 17-Jan-2015.)
Hypotheses
Ref Expression
lcfl8.h 𝐻 = (LHyp‘𝐾)
lcfl8.o = ((ocH‘𝐾)‘𝑊)
lcfl8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl8.v 𝑉 = (Base‘𝑈)
lcfl8.f 𝐹 = (LFnl‘𝑈)
lcfl8.l 𝐿 = (LKer‘𝑈)
lcfl8.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl8.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl8.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl8 (𝜑 → (𝐺𝐶 ↔ ∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥})))
Distinct variable groups:   𝑥,𝐶   𝑓,𝐹   𝑥,𝑓,𝐺   𝑓,𝐿,𝑥   ,𝑓,𝑥   𝑥,𝑈   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐶(𝑓)   𝑈(𝑓)   𝐹(𝑥)   𝐻(𝑥,𝑓)   𝐾(𝑥,𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem lcfl8
StepHypRef Expression
1 lcfl8.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
2 lcfl8.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 lcfl8.k . . . . . . . 8 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 38114 . . . . . . 7 (𝜑𝑈 ∈ LMod)
54adantr 481 . . . . . 6 ((𝜑𝐺𝐶) → 𝑈 ∈ LMod)
6 lcfl8.v . . . . . . 7 𝑉 = (Base‘𝑈)
7 eqid 2824 . . . . . . 7 (LSpan‘𝑈) = (LSpan‘𝑈)
8 eqid 2824 . . . . . . 7 (LSAtoms‘𝑈) = (LSAtoms‘𝑈)
96, 7, 8islsati 35998 . . . . . 6 ((𝑈 ∈ LMod ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) → ∃𝑥𝑉 ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥}))
105, 9sylan 580 . . . . 5 (((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) → ∃𝑥𝑉 ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥}))
11 simpr 485 . . . . . . . . 9 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥}))
1211fveq2d 6670 . . . . . . . 8 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → ( ‘( ‘(𝐿𝐺))) = ( ‘((LSpan‘𝑈)‘{𝑥})))
13 simp-4r 780 . . . . . . . . 9 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → 𝐺𝐶)
14 lcfl8.c . . . . . . . . . 10 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
15 lcfl8.g . . . . . . . . . . 11 (𝜑𝐺𝐹)
1615ad4antr 728 . . . . . . . . . 10 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → 𝐺𝐹)
1714, 16lcfl1 38496 . . . . . . . . 9 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
1813, 17mpbid 233 . . . . . . . 8 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
19 lcfl8.o . . . . . . . . 9 = ((ocH‘𝐾)‘𝑊)
203ad4antr 728 . . . . . . . . 9 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simplr 765 . . . . . . . . . 10 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → 𝑥𝑉)
2221snssd 4740 . . . . . . . . 9 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → {𝑥} ⊆ 𝑉)
231, 2, 19, 6, 7, 20, 22dochocsp 38383 . . . . . . . 8 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → ( ‘((LSpan‘𝑈)‘{𝑥})) = ( ‘{𝑥}))
2412, 18, 233eqtr3d 2868 . . . . . . 7 (((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) ∧ ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥})) → (𝐿𝐺) = ( ‘{𝑥}))
2524ex 413 . . . . . 6 ((((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) ∧ 𝑥𝑉) → (( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥}) → (𝐿𝐺) = ( ‘{𝑥})))
2625reximdva 3278 . . . . 5 (((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) → (∃𝑥𝑉 ( ‘(𝐿𝐺)) = ((LSpan‘𝑈)‘{𝑥}) → ∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥})))
2710, 26mpd 15 . . . 4 (((𝜑𝐺𝐶) ∧ ( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈)) → ∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥}))
285adantr 481 . . . . . 6 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) = 𝑉) → 𝑈 ∈ LMod)
29 eqid 2824 . . . . . . 7 (0g𝑈) = (0g𝑈)
306, 29lmod0vcl 19585 . . . . . 6 (𝑈 ∈ LMod → (0g𝑈) ∈ 𝑉)
3128, 30syl 17 . . . . 5 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) = 𝑉) → (0g𝑈) ∈ 𝑉)
32 simpr 485 . . . . . 6 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) = 𝑉) → (𝐿𝐺) = 𝑉)
333adantr 481 . . . . . . . 8 ((𝜑𝐺𝐶) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3433adantr 481 . . . . . . 7 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) = 𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
351, 2, 19, 6, 29doch0 38362 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ‘{(0g𝑈)}) = 𝑉)
3634, 35syl 17 . . . . . 6 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) = 𝑉) → ( ‘{(0g𝑈)}) = 𝑉)
3732, 36eqtr4d 2863 . . . . 5 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) = 𝑉) → (𝐿𝐺) = ( ‘{(0g𝑈)}))
38 sneq 4573 . . . . . . 7 (𝑥 = (0g𝑈) → {𝑥} = {(0g𝑈)})
3938fveq2d 6670 . . . . . 6 (𝑥 = (0g𝑈) → ( ‘{𝑥}) = ( ‘{(0g𝑈)}))
4039rspceeqv 3641 . . . . 5 (((0g𝑈) ∈ 𝑉 ∧ (𝐿𝐺) = ( ‘{(0g𝑈)})) → ∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥}))
4131, 37, 40syl2anc 584 . . . 4 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) = 𝑉) → ∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥}))
42 lcfl8.f . . . . . 6 𝐹 = (LFnl‘𝑈)
43 lcfl8.l . . . . . 6 𝐿 = (LKer‘𝑈)
441, 19, 2, 6, 8, 42, 43, 14, 3, 15lcfl3 38498 . . . . 5 (𝜑 → (𝐺𝐶 ↔ (( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈) ∨ (𝐿𝐺) = 𝑉)))
4544biimpa 477 . . . 4 ((𝜑𝐺𝐶) → (( ‘(𝐿𝐺)) ∈ (LSAtoms‘𝑈) ∨ (𝐿𝐺) = 𝑉))
4627, 41, 45mpjaodan 954 . . 3 ((𝜑𝐺𝐶) → ∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥}))
4746ex 413 . 2 (𝜑 → (𝐺𝐶 → ∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥})))
4833ad2ant1 1127 . . . . . 6 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
49 simp2 1131 . . . . . . . 8 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → 𝑥𝑉)
5049snssd 4740 . . . . . . 7 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → {𝑥} ⊆ 𝑉)
51 eqid 2824 . . . . . . . 8 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
521, 51, 2, 6, 19dochcl 38357 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑥} ⊆ 𝑉) → ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
5348, 50, 52syl2anc 584 . . . . . 6 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
541, 51, 19dochoc 38371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘( ‘{𝑥}))) = ( ‘{𝑥}))
5548, 53, 54syl2anc 584 . . . . 5 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → ( ‘( ‘( ‘{𝑥}))) = ( ‘{𝑥}))
56 simp3 1132 . . . . . . 7 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → (𝐿𝐺) = ( ‘{𝑥}))
5756fveq2d 6670 . . . . . 6 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → ( ‘(𝐿𝐺)) = ( ‘( ‘{𝑥})))
5857fveq2d 6670 . . . . 5 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → ( ‘( ‘(𝐿𝐺))) = ( ‘( ‘( ‘{𝑥}))))
5955, 58, 563eqtr4d 2870 . . . 4 ((𝜑𝑥𝑉 ∧ (𝐿𝐺) = ( ‘{𝑥})) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
6059rexlimdv3a 3290 . . 3 (𝜑 → (∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥}) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
6114, 15lcfl1 38496 . . 3 (𝜑 → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
6260, 61sylibrd 260 . 2 (𝜑 → (∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥}) → 𝐺𝐶))
6347, 62impbid 213 1 (𝜑 → (𝐺𝐶 ↔ ∃𝑥𝑉 (𝐿𝐺) = ( ‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 843  w3a 1081   = wceq 1530  wcel 2106  wrex 3143  {crab 3146  wss 3939  {csn 4563  ran crn 5554  cfv 6351  Basecbs 16475  0gc0g 16705  LModclmod 19556  LSpanclspn 19665  LSAtomsclsa 35978  LFnlclfn 36061  LKerclk 36089  HLchlt 36354  LHypclh 36988  DVecHcdvh 38082  DIsoHcdih 38232  ocHcoch 38351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-riotaBAD 35957
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-tpos 7886  df-undef 7933  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-grp 18038  df-minusg 18039  df-sbg 18040  df-subg 18208  df-cntz 18379  df-lsm 18683  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-oppr 19295  df-dvdsr 19313  df-unit 19314  df-invr 19344  df-dvr 19355  df-drng 19426  df-lmod 19558  df-lss 19626  df-lsp 19666  df-lvec 19797  df-lsatoms 35980  df-lshyp 35981  df-lfl 36062  df-lkr 36090  df-oposet 36180  df-ol 36182  df-oml 36183  df-covers 36270  df-ats 36271  df-atl 36302  df-cvlat 36326  df-hlat 36355  df-llines 36502  df-lplanes 36503  df-lvols 36504  df-lines 36505  df-psubsp 36507  df-pmap 36508  df-padd 36800  df-lhyp 36992  df-laut 36993  df-ldil 37108  df-ltrn 37109  df-trl 37163  df-tgrp 37747  df-tendo 37759  df-edring 37761  df-dveca 38007  df-disoa 38033  df-dvech 38083  df-dib 38143  df-dic 38177  df-dih 38233  df-doch 38352  df-djh 38399
This theorem is referenced by:  lcfl8a  38507  lcfl8b  38508
  Copyright terms: Public domain W3C validator