Step | Hyp | Ref
| Expression |
1 | | lcfl8.h |
. . . . . . . 8
β’ π» = (LHypβπΎ) |
2 | | lcfl8.u |
. . . . . . . 8
β’ π = ((DVecHβπΎ)βπ) |
3 | | lcfl8.k |
. . . . . . . 8
β’ (π β (πΎ β HL β§ π β π»)) |
4 | 1, 2, 3 | dvhlmod 39969 |
. . . . . . 7
β’ (π β π β LMod) |
5 | 4 | adantr 481 |
. . . . . 6
β’ ((π β§ πΊ β πΆ) β π β LMod) |
6 | | lcfl8.v |
. . . . . . 7
β’ π = (Baseβπ) |
7 | | eqid 2732 |
. . . . . . 7
β’
(LSpanβπ) =
(LSpanβπ) |
8 | | eqid 2732 |
. . . . . . 7
β’
(LSAtomsβπ) =
(LSAtomsβπ) |
9 | 6, 7, 8 | islsati 37852 |
. . . . . 6
β’ ((π β LMod β§ ( β₯
β(πΏβπΊ)) β (LSAtomsβπ)) β βπ₯ β π ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) |
10 | 5, 9 | sylan 580 |
. . . . 5
β’ (((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β βπ₯ β π ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) |
11 | | simpr 485 |
. . . . . . . . 9
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) |
12 | 11 | fveq2d 6892 |
. . . . . . . 8
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β ( β₯ β( β₯
β(πΏβπΊ))) = ( β₯
β((LSpanβπ)β{π₯}))) |
13 | | simp-4r 782 |
. . . . . . . . 9
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β πΊ β πΆ) |
14 | | lcfl8.c |
. . . . . . . . . 10
β’ πΆ = {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
15 | | lcfl8.g |
. . . . . . . . . . 11
β’ (π β πΊ β πΉ) |
16 | 15 | ad4antr 730 |
. . . . . . . . . 10
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β πΊ β πΉ) |
17 | 14, 16 | lcfl1 40351 |
. . . . . . . . 9
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β (πΊ β πΆ β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
18 | 13, 17 | mpbid 231 |
. . . . . . . 8
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ)) |
19 | | lcfl8.o |
. . . . . . . . 9
β’ β₯ =
((ocHβπΎ)βπ) |
20 | 3 | ad4antr 730 |
. . . . . . . . 9
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β (πΎ β HL β§ π β π»)) |
21 | | simplr 767 |
. . . . . . . . . 10
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β π₯ β π) |
22 | 21 | snssd 4811 |
. . . . . . . . 9
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β {π₯} β π) |
23 | 1, 2, 19, 6, 7, 20, 22 | dochocsp 40238 |
. . . . . . . 8
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β ( β₯
β((LSpanβπ)β{π₯})) = ( β₯ β{π₯})) |
24 | 12, 18, 23 | 3eqtr3d 2780 |
. . . . . . 7
β’
(((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β§ ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯})) β (πΏβπΊ) = ( β₯ β{π₯})) |
25 | 24 | ex 413 |
. . . . . 6
β’ ((((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β§ π₯ β π) β (( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯}) β (πΏβπΊ) = ( β₯ β{π₯}))) |
26 | 25 | reximdva 3168 |
. . . . 5
β’ (((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β (βπ₯ β π ( β₯ β(πΏβπΊ)) = ((LSpanβπ)β{π₯}) β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯}))) |
27 | 10, 26 | mpd 15 |
. . . 4
β’ (((π β§ πΊ β πΆ) β§ ( β₯ β(πΏβπΊ)) β (LSAtomsβπ)) β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯})) |
28 | 5 | adantr 481 |
. . . . . 6
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) = π) β π β LMod) |
29 | | eqid 2732 |
. . . . . . 7
β’
(0gβπ) = (0gβπ) |
30 | 6, 29 | lmod0vcl 20493 |
. . . . . 6
β’ (π β LMod β
(0gβπ)
β π) |
31 | 28, 30 | syl 17 |
. . . . 5
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) = π) β (0gβπ) β π) |
32 | | simpr 485 |
. . . . . 6
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) = π) β (πΏβπΊ) = π) |
33 | 3 | adantr 481 |
. . . . . . . 8
β’ ((π β§ πΊ β πΆ) β (πΎ β HL β§ π β π»)) |
34 | 33 | adantr 481 |
. . . . . . 7
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) = π) β (πΎ β HL β§ π β π»)) |
35 | 1, 2, 19, 6, 29 | doch0 40217 |
. . . . . . 7
β’ ((πΎ β HL β§ π β π») β ( β₯
β{(0gβπ)}) = π) |
36 | 34, 35 | syl 17 |
. . . . . 6
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) = π) β ( β₯
β{(0gβπ)}) = π) |
37 | 32, 36 | eqtr4d 2775 |
. . . . 5
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) = π) β (πΏβπΊ) = ( β₯
β{(0gβπ)})) |
38 | | sneq 4637 |
. . . . . . 7
β’ (π₯ = (0gβπ) β {π₯} = {(0gβπ)}) |
39 | 38 | fveq2d 6892 |
. . . . . 6
β’ (π₯ = (0gβπ) β ( β₯ β{π₯}) = ( β₯
β{(0gβπ)})) |
40 | 39 | rspceeqv 3632 |
. . . . 5
β’
(((0gβπ) β π β§ (πΏβπΊ) = ( β₯
β{(0gβπ)})) β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯})) |
41 | 31, 37, 40 | syl2anc 584 |
. . . 4
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) = π) β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯})) |
42 | | lcfl8.f |
. . . . . 6
β’ πΉ = (LFnlβπ) |
43 | | lcfl8.l |
. . . . . 6
β’ πΏ = (LKerβπ) |
44 | 1, 19, 2, 6, 8, 42,
43, 14, 3, 15 | lcfl3 40353 |
. . . . 5
β’ (π β (πΊ β πΆ β (( β₯ β(πΏβπΊ)) β (LSAtomsβπ) β¨ (πΏβπΊ) = π))) |
45 | 44 | biimpa 477 |
. . . 4
β’ ((π β§ πΊ β πΆ) β (( β₯ β(πΏβπΊ)) β (LSAtomsβπ) β¨ (πΏβπΊ) = π)) |
46 | 27, 41, 45 | mpjaodan 957 |
. . 3
β’ ((π β§ πΊ β πΆ) β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯})) |
47 | 46 | ex 413 |
. 2
β’ (π β (πΊ β πΆ β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯}))) |
48 | 3 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β (πΎ β HL β§ π β π»)) |
49 | | simp2 1137 |
. . . . . . . 8
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β π₯ β π) |
50 | 49 | snssd 4811 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β {π₯} β π) |
51 | | eqid 2732 |
. . . . . . . 8
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
52 | 1, 51, 2, 6, 19 | dochcl 40212 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ {π₯} β π) β ( β₯ β{π₯}) β ran
((DIsoHβπΎ)βπ)) |
53 | 48, 50, 52 | syl2anc 584 |
. . . . . 6
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β{π₯}) β ran
((DIsoHβπΎ)βπ)) |
54 | 1, 51, 19 | dochoc 40226 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ ( β₯ β{π₯}) β ran
((DIsoHβπΎ)βπ)) β ( β₯ β( β₯
β( β₯ β{π₯}))) = ( β₯ β{π₯})) |
55 | 48, 53, 54 | syl2anc 584 |
. . . . 5
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β( β₯
β( β₯ β{π₯}))) = ( β₯ β{π₯})) |
56 | | simp3 1138 |
. . . . . . 7
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β (πΏβπΊ) = ( β₯ β{π₯})) |
57 | 56 | fveq2d 6892 |
. . . . . 6
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β(πΏβπΊ)) = ( β₯ β( β₯
β{π₯}))) |
58 | 57 | fveq2d 6892 |
. . . . 5
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β( β₯
β(πΏβπΊ))) = ( β₯ β( β₯
β( β₯ β{π₯})))) |
59 | 55, 58, 56 | 3eqtr4d 2782 |
. . . 4
β’ ((π β§ π₯ β π β§ (πΏβπΊ) = ( β₯ β{π₯})) β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ)) |
60 | 59 | rexlimdv3a 3159 |
. . 3
β’ (π β (βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯}) β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
61 | 14, 15 | lcfl1 40351 |
. . 3
β’ (π β (πΊ β πΆ β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
62 | 60, 61 | sylibrd 258 |
. 2
β’ (π β (βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯}) β πΊ β πΆ)) |
63 | 47, 62 | impbid 211 |
1
β’ (π β (πΊ β πΆ β βπ₯ β π (πΏβπΊ) = ( β₯ β{π₯}))) |