| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2 | Structured version Visualization version GIF version | ||
| Description: The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 41506 through lclkrlem2y 41530 are used for the proof. Here we express lclkrlem2y 41530 in terms of membership in the set 𝐶 of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.) |
| Ref | Expression |
|---|---|
| lclkrlem2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lclkrlem2.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lclkrlem2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lclkrlem2.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lclkrlem2.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lclkrlem2.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lclkrlem2.p | ⊢ + = (+g‘𝐷) |
| lclkrlem2.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
| lclkrlem2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lclkrlem2.e | ⊢ (𝜑 → 𝐸 ∈ 𝐶) |
| lclkrlem2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| lclkrlem2 | ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lclkrlem2.l | . . 3 ⊢ 𝐿 = (LKer‘𝑈) | |
| 2 | lclkrlem2.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | lclkrlem2.o | . . 3 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 4 | lclkrlem2.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | lclkrlem2.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 6 | lclkrlem2.d | . . 3 ⊢ 𝐷 = (LDual‘𝑈) | |
| 7 | lclkrlem2.p | . . 3 ⊢ + = (+g‘𝐷) | |
| 8 | lclkrlem2.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | lclkrlem2.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐶) | |
| 10 | lclkrlem2.c | . . . . . 6 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
| 11 | 10 | lcfl1lem 41490 | . . . . 5 ⊢ (𝐸 ∈ 𝐶 ↔ (𝐸 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸))) |
| 12 | 11 | simplbi 497 | . . . 4 ⊢ (𝐸 ∈ 𝐶 → 𝐸 ∈ 𝐹) |
| 13 | 9, 12 | syl 17 | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
| 14 | lclkrlem2.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐶) | |
| 15 | 10 | lcfl1lem 41490 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 ↔ (𝐺 ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 16 | 15 | simplbi 497 | . . . 4 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐹) |
| 17 | 14, 16 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| 18 | 10, 13 | lcfl1 41491 | . . . 4 ⊢ (𝜑 → (𝐸 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸))) |
| 19 | 9, 18 | mpbid 232 | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐸))) = (𝐿‘𝐸)) |
| 20 | 10, 17 | lcfl1 41491 | . . . 4 ⊢ (𝜑 → (𝐺 ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺))) |
| 21 | 14, 20 | mpbid 232 | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘𝐺))) = (𝐿‘𝐺)) |
| 22 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 17, 19, 21 | lclkrlem2y 41530 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
| 23 | 2, 4, 8 | dvhlmod 41109 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 24 | 5, 6, 7, 23, 13, 17 | ldualvaddcl 39128 | . . 3 ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐹) |
| 25 | 10, 24 | lcfl1 41491 | . 2 ⊢ (𝜑 → ((𝐸 + 𝐺) ∈ 𝐶 ↔ ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))) |
| 26 | 22, 25 | mpbird 257 | 1 ⊢ (𝜑 → (𝐸 + 𝐺) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ‘cfv 6486 (class class class)co 7353 +gcplusg 17180 LFnlclfn 39055 LKerclk 39083 LDualcld 39121 HLchlt 39348 LHypclh 39983 DVecHcdvh 41077 ocHcoch 41346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-riotaBAD 38951 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-undef 8213 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-0g 17364 df-mre 17507 df-mrc 17508 df-acs 17510 df-proset 18219 df-poset 18238 df-plt 18253 df-lub 18269 df-glb 18270 df-join 18271 df-meet 18272 df-p0 18348 df-p1 18349 df-lat 18357 df-clat 18424 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-grp 18834 df-minusg 18835 df-sbg 18836 df-subg 19021 df-cntz 19215 df-oppg 19244 df-lsm 19534 df-cmn 19680 df-abl 19681 df-mgp 20045 df-rng 20057 df-ur 20086 df-ring 20139 df-oppr 20241 df-dvdsr 20261 df-unit 20262 df-invr 20292 df-dvr 20305 df-drng 20635 df-lmod 20784 df-lss 20854 df-lsp 20894 df-lvec 21026 df-lsatoms 38974 df-lshyp 38975 df-lcv 39017 df-lfl 39056 df-lkr 39084 df-ldual 39122 df-oposet 39174 df-ol 39176 df-oml 39177 df-covers 39264 df-ats 39265 df-atl 39296 df-cvlat 39320 df-hlat 39349 df-llines 39497 df-lplanes 39498 df-lvols 39499 df-lines 39500 df-psubsp 39502 df-pmap 39503 df-padd 39795 df-lhyp 39987 df-laut 39988 df-ldil 40103 df-ltrn 40104 df-trl 40158 df-tgrp 40742 df-tendo 40754 df-edring 40756 df-dveca 41002 df-disoa 41028 df-dvech 41078 df-dib 41138 df-dic 41172 df-dih 41228 df-doch 41347 df-djh 41394 |
| This theorem is referenced by: lclkr 41532 lclkrslem2 41537 |
| Copyright terms: Public domain | W3C validator |