![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2 | Structured version Visualization version GIF version |
Description: The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 40834 through lclkrlem2y 40858 are used for the proof. Here we express lclkrlem2y 40858 in terms of membership in the set πΆ of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2.h | β’ π» = (LHypβπΎ) |
lclkrlem2.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2.f | β’ πΉ = (LFnlβπ) |
lclkrlem2.l | β’ πΏ = (LKerβπ) |
lclkrlem2.d | β’ π· = (LDualβπ) |
lclkrlem2.p | β’ + = (+gβπ·) |
lclkrlem2.c | β’ πΆ = {π β πΉ β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} |
lclkrlem2.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2.e | β’ (π β πΈ β πΆ) |
lclkrlem2.g | β’ (π β πΊ β πΆ) |
Ref | Expression |
---|---|
lclkrlem2 | β’ (π β (πΈ + πΊ) β πΆ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2.l | . . 3 β’ πΏ = (LKerβπ) | |
2 | lclkrlem2.h | . . 3 β’ π» = (LHypβπΎ) | |
3 | lclkrlem2.o | . . 3 β’ β₯ = ((ocHβπΎ)βπ) | |
4 | lclkrlem2.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
5 | lclkrlem2.f | . . 3 β’ πΉ = (LFnlβπ) | |
6 | lclkrlem2.d | . . 3 β’ π· = (LDualβπ) | |
7 | lclkrlem2.p | . . 3 β’ + = (+gβπ·) | |
8 | lclkrlem2.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
9 | lclkrlem2.e | . . . 4 β’ (π β πΈ β πΆ) | |
10 | lclkrlem2.c | . . . . . 6 β’ πΆ = {π β πΉ β£ ( β₯ β( β₯ β(πΏβπ))) = (πΏβπ)} | |
11 | 10 | lcfl1lem 40818 | . . . . 5 β’ (πΈ β πΆ β (πΈ β πΉ β§ ( β₯ β( β₯ β(πΏβπΈ))) = (πΏβπΈ))) |
12 | 11 | simplbi 497 | . . . 4 β’ (πΈ β πΆ β πΈ β πΉ) |
13 | 9, 12 | syl 17 | . . 3 β’ (π β πΈ β πΉ) |
14 | lclkrlem2.g | . . . 4 β’ (π β πΊ β πΆ) | |
15 | 10 | lcfl1lem 40818 | . . . . 5 β’ (πΊ β πΆ β (πΊ β πΉ β§ ( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ))) |
16 | 15 | simplbi 497 | . . . 4 β’ (πΊ β πΆ β πΊ β πΉ) |
17 | 14, 16 | syl 17 | . . 3 β’ (π β πΊ β πΉ) |
18 | 10, 13 | lcfl1 40819 | . . . 4 β’ (π β (πΈ β πΆ β ( β₯ β( β₯ β(πΏβπΈ))) = (πΏβπΈ))) |
19 | 9, 18 | mpbid 231 | . . 3 β’ (π β ( β₯ β( β₯ β(πΏβπΈ))) = (πΏβπΈ)) |
20 | 10, 17 | lcfl1 40819 | . . . 4 β’ (π β (πΊ β πΆ β ( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ))) |
21 | 14, 20 | mpbid 231 | . . 3 β’ (π β ( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ)) |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 17, 19, 21 | lclkrlem2y 40858 | . 2 β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
23 | 2, 4, 8 | dvhlmod 40437 | . . . 4 β’ (π β π β LMod) |
24 | 5, 6, 7, 23, 13, 17 | ldualvaddcl 38456 | . . 3 β’ (π β (πΈ + πΊ) β πΉ) |
25 | 10, 24 | lcfl1 40819 | . 2 β’ (π β ((πΈ + πΊ) β πΆ β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ)))) |
26 | 22, 25 | mpbird 257 | 1 β’ (π β (πΈ + πΊ) β πΆ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3424 βcfv 6533 (class class class)co 7401 +gcplusg 17195 LFnlclfn 38383 LKerclk 38411 LDualcld 38449 HLchlt 38676 LHypclh 39311 DVecHcdvh 40405 ocHcoch 40674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-sca 17211 df-vsca 17212 df-0g 17385 df-mre 17528 df-mrc 17529 df-acs 17531 df-proset 18249 df-poset 18267 df-plt 18284 df-lub 18300 df-glb 18301 df-join 18302 df-meet 18303 df-p0 18379 df-p1 18380 df-lat 18386 df-clat 18453 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19039 df-cntz 19222 df-oppg 19251 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20578 df-lmod 20697 df-lss 20768 df-lsp 20808 df-lvec 20940 df-lsatoms 38302 df-lshyp 38303 df-lcv 38345 df-lfl 38384 df-lkr 38412 df-ldual 38450 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 df-tgrp 40070 df-tendo 40082 df-edring 40084 df-dveca 40330 df-disoa 40356 df-dvech 40406 df-dib 40466 df-dic 40500 df-dih 40556 df-doch 40675 df-djh 40722 |
This theorem is referenced by: lclkr 40860 lclkrslem2 40865 |
Copyright terms: Public domain | W3C validator |