Step | Hyp | Ref
| Expression |
1 | | df-ne 2941 |
. . . . 5
β’ ((πΏβπΊ) β π β Β¬ (πΏβπΊ) = π) |
2 | | lcfl6.h |
. . . . . . . 8
β’ π» = (LHypβπΎ) |
3 | | lcfl6.o |
. . . . . . . 8
β’ β₯ =
((ocHβπΎ)βπ) |
4 | | lcfl6.u |
. . . . . . . 8
β’ π = ((DVecHβπΎ)βπ) |
5 | | lcfl6.v |
. . . . . . . 8
β’ π = (Baseβπ) |
6 | | lcfl6.s |
. . . . . . . 8
β’ π = (Scalarβπ) |
7 | | lcfl6.z |
. . . . . . . 8
β’ 0 =
(0gβπ) |
8 | | eqid 2732 |
. . . . . . . 8
β’
(1rβπ) = (1rβπ) |
9 | | lcfl6.f |
. . . . . . . 8
β’ πΉ = (LFnlβπ) |
10 | | lcfl6.l |
. . . . . . . 8
β’ πΏ = (LKerβπ) |
11 | | lcfl6.k |
. . . . . . . . 9
β’ (π β (πΎ β HL β§ π β π»)) |
12 | 11 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β (πΎ β HL β§ π β π»)) |
13 | | lcfl6.g |
. . . . . . . . 9
β’ (π β πΊ β πΉ) |
14 | 13 | ad2antrr 724 |
. . . . . . . 8
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β πΊ β πΉ) |
15 | | lcfl6.c |
. . . . . . . . . . . . . 14
β’ πΆ = {π β πΉ β£ ( β₯ β( β₯
β(πΏβπ))) = (πΏβπ)} |
16 | 2, 3, 4, 5, 9, 10,
15, 11, 13 | lcfl2 40352 |
. . . . . . . . . . . . 13
β’ (π β (πΊ β πΆ β (( β₯ β( β₯
β(πΏβπΊ))) β π β¨ (πΏβπΊ) = π))) |
17 | 16 | biimpa 477 |
. . . . . . . . . . . 12
β’ ((π β§ πΊ β πΆ) β (( β₯ β( β₯
β(πΏβπΊ))) β π β¨ (πΏβπΊ) = π)) |
18 | 17 | orcomd 869 |
. . . . . . . . . . 11
β’ ((π β§ πΊ β πΆ) β ((πΏβπΊ) = π β¨ ( β₯ β( β₯
β(πΏβπΊ))) β π)) |
19 | 18 | ord 862 |
. . . . . . . . . 10
β’ ((π β§ πΊ β πΆ) β (Β¬ (πΏβπΊ) = π β ( β₯ β( β₯
β(πΏβπΊ))) β π)) |
20 | 1, 19 | biimtrid 241 |
. . . . . . . . 9
β’ ((π β§ πΊ β πΆ) β ((πΏβπΊ) β π β ( β₯ β( β₯
β(πΏβπΊ))) β π)) |
21 | 20 | imp 407 |
. . . . . . . 8
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β ( β₯ β( β₯
β(πΏβπΊ))) β π) |
22 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 21 | dochkr1 40337 |
. . . . . . 7
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β βπ₯ β (( β₯ β(πΏβπΊ)) β { 0 })(πΊβπ₯) = (1rβπ)) |
23 | 2, 4, 11 | dvhlmod 39969 |
. . . . . . . . . . . 12
β’ (π β π β LMod) |
24 | 5, 9, 10, 23, 13 | lkrssv 37954 |
. . . . . . . . . . 11
β’ (π β (πΏβπΊ) β π) |
25 | 2, 4, 5, 3 | dochssv 40214 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ (πΏβπΊ) β π) β ( β₯ β(πΏβπΊ)) β π) |
26 | 11, 24, 25 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β ( β₯ β(πΏβπΊ)) β π) |
27 | 26 | ssdifd 4139 |
. . . . . . . . 9
β’ (π β (( β₯ β(πΏβπΊ)) β { 0 }) β (π β { 0 })) |
28 | 27 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β§ (π₯ β (( β₯ β(πΏβπΊ)) β { 0 }) β§ (πΊβπ₯) = (1rβπ))) β (( β₯ β(πΏβπΊ)) β { 0 }) β (π β { 0 })) |
29 | | simprl 769 |
. . . . . . . 8
β’ ((((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β§ (π₯ β (( β₯ β(πΏβπΊ)) β { 0 }) β§ (πΊβπ₯) = (1rβπ))) β π₯ β (( β₯ β(πΏβπΊ)) β { 0 })) |
30 | 28, 29 | sseldd 3982 |
. . . . . . 7
β’ ((((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β§ (π₯ β (( β₯ β(πΏβπΊ)) β { 0 }) β§ (πΊβπ₯) = (1rβπ))) β π₯ β (π β { 0 })) |
31 | | lcfl6.a |
. . . . . . . 8
β’ + =
(+gβπ) |
32 | | lcfl6.t |
. . . . . . . 8
β’ Β· = (
Β·π βπ) |
33 | | lcfl6.r |
. . . . . . . 8
β’ π
= (Baseβπ) |
34 | 11 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β§ (π₯ β (( β₯ β(πΏβπΊ)) β { 0 }) β§ (πΊβπ₯) = (1rβπ))) β (πΎ β HL β§ π β π»)) |
35 | 13 | ad3antrrr 728 |
. . . . . . . 8
β’ ((((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β§ (π₯ β (( β₯ β(πΏβπΊ)) β { 0 }) β§ (πΊβπ₯) = (1rβπ))) β πΊ β πΉ) |
36 | | simprr 771 |
. . . . . . . 8
β’ ((((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β§ (π₯ β (( β₯ β(πΏβπΊ)) β { 0 }) β§ (πΊβπ₯) = (1rβπ))) β (πΊβπ₯) = (1rβπ)) |
37 | 2, 3, 4, 5, 31, 32, 6, 8, 33, 7, 9, 10, 34, 35, 29, 36 | lcfl6lem 40357 |
. . . . . . 7
β’ ((((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β§ (π₯ β (( β₯ β(πΏβπΊ)) β { 0 }) β§ (πΊβπ₯) = (1rβπ))) β πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
38 | 22, 30, 37 | reximssdv 3172 |
. . . . . 6
β’ (((π β§ πΊ β πΆ) β§ (πΏβπΊ) β π) β βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
39 | 38 | ex 413 |
. . . . 5
β’ ((π β§ πΊ β πΆ) β ((πΏβπΊ) β π β βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))))) |
40 | 1, 39 | biimtrrid 242 |
. . . 4
β’ ((π β§ πΊ β πΆ) β (Β¬ (πΏβπΊ) = π β βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))))) |
41 | 40 | orrd 861 |
. . 3
β’ ((π β§ πΊ β πΆ) β ((πΏβπΊ) = π β¨ βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))))) |
42 | 41 | ex 413 |
. 2
β’ (π β (πΊ β πΆ β ((πΏβπΊ) = π β¨ βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))))) |
43 | | olc 866 |
. . . 4
β’ ((πΏβπΊ) = π β (( β₯ β( β₯
β(πΏβπΊ))) β π β¨ (πΏβπΊ) = π)) |
44 | 43, 16 | imbitrrid 245 |
. . 3
β’ (π β ((πΏβπΊ) = π β πΊ β πΆ)) |
45 | 11 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π₯ β (π β { 0 })) β (πΎ β HL β§ π β π»)) |
46 | | eldifi 4125 |
. . . . . . . . . . 11
β’ (π₯ β (π β { 0 }) β π₯ β π) |
47 | 46 | adantl 482 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π β { 0 })) β π₯ β π) |
48 | 47 | snssd 4811 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π β { 0 })) β {π₯} β π) |
49 | | eqid 2732 |
. . . . . . . . . 10
β’
((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) |
50 | 2, 49, 4, 5, 3 | dochcl 40212 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ {π₯} β π) β ( β₯ β{π₯}) β ran
((DIsoHβπΎ)βπ)) |
51 | 45, 48, 50 | syl2anc 584 |
. . . . . . . 8
β’ ((π β§ π₯ β (π β { 0 })) β ( β₯
β{π₯}) β ran
((DIsoHβπΎ)βπ)) |
52 | 2, 49, 3 | dochoc 40226 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ ( β₯ β{π₯}) β ran
((DIsoHβπΎ)βπ)) β ( β₯ β( β₯
β( β₯ β{π₯}))) = ( β₯ β{π₯})) |
53 | 45, 51, 52 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π₯ β (π β { 0 })) β ( β₯
β( β₯ β( β₯
β{π₯}))) = ( β₯
β{π₯})) |
54 | 53 | 3adant3 1132 |
. . . . . 6
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β ( β₯ β( β₯
β( β₯ β{π₯}))) = ( β₯ β{π₯})) |
55 | | simp3 1138 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) |
56 | 55 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β (πΏβπΊ) = (πΏβ(π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))))) |
57 | | eqid 2732 |
. . . . . . . . . . 11
β’ (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) |
58 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β (π β { 0 })) β π₯ β (π β { 0 })) |
59 | 2, 3, 4, 5, 7, 31,
32, 10, 6, 33, 57, 45, 58 | dochsnkr2 40332 |
. . . . . . . . . 10
β’ ((π β§ π₯ β (π β { 0 })) β (πΏβ(π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) = ( β₯ β{π₯})) |
60 | 59 | 3adant3 1132 |
. . . . . . . . 9
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β (πΏβ(π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) = ( β₯ β{π₯})) |
61 | 56, 60 | eqtrd 2772 |
. . . . . . . 8
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β (πΏβπΊ) = ( β₯ β{π₯})) |
62 | 61 | fveq2d 6892 |
. . . . . . 7
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β ( β₯ β(πΏβπΊ)) = ( β₯ β( β₯
β{π₯}))) |
63 | 62 | fveq2d 6892 |
. . . . . 6
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β ( β₯ β( β₯
β(πΏβπΊ))) = ( β₯ β( β₯
β( β₯ β{π₯})))) |
64 | 54, 63, 61 | 3eqtr4d 2782 |
. . . . 5
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ)) |
65 | 13 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β πΊ β πΉ) |
66 | 15, 65 | lcfl1 40351 |
. . . . 5
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β (πΊ β πΆ β ( β₯ β( β₯
β(πΏβπΊ))) = (πΏβπΊ))) |
67 | 64, 66 | mpbird 256 |
. . . 4
β’ ((π β§ π₯ β (π β { 0 }) β§ πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β πΊ β πΆ) |
68 | 67 | rexlimdv3a 3159 |
. . 3
β’ (π β (βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯)))) β πΊ β πΆ)) |
69 | 44, 68 | jaod 857 |
. 2
β’ (π β (((πΏβπΊ) = π β¨ βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))) β πΊ β πΆ)) |
70 | 42, 69 | impbid 211 |
1
β’ (π β (πΊ β πΆ β ((πΏβπΊ) = π β¨ βπ₯ β (π β { 0 })πΊ = (π£ β π β¦ (β©π β π
βπ€ β ( β₯ β{π₯})π£ = (π€ + (π Β· π₯))))))) |