Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6 Structured version   Visualization version   GIF version

Theorem lcfl6 41502
Description: Property of a functional with a closed kernel. Note that (𝐿𝐺) = 𝑉 means the functional is zero by lkr0f 39095. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6.h 𝐻 = (LHyp‘𝐾)
lcfl6.o = ((ocH‘𝐾)‘𝑊)
lcfl6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6.v 𝑉 = (Base‘𝑈)
lcfl6.a + = (+g𝑈)
lcfl6.t · = ( ·𝑠𝑈)
lcfl6.s 𝑆 = (Scalar‘𝑈)
lcfl6.r 𝑅 = (Base‘𝑆)
lcfl6.z 0 = (0g𝑈)
lcfl6.f 𝐹 = (LFnl‘𝑈)
lcfl6.l 𝐿 = (LKer‘𝑈)
lcfl6.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl6 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   𝑓,𝑘,𝑣,𝑤,𝑥,   𝑤, 0 ,𝑥   𝑥,𝐶   𝑓,𝐺,𝑥   𝑓,𝐹   𝑓,𝐿,𝑥   𝜑,𝑥   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤,𝑥   𝑣,𝑉,𝑥   𝑥,𝑈   · ,𝑘,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑘)   + (𝑥,𝑓)   𝑅(𝑥,𝑤,𝑓)   𝑆(𝑣,𝑓)   · (𝑥,𝑓)   𝑈(𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑣,𝑓,𝑘)

Proof of Theorem lcfl6
StepHypRef Expression
1 df-ne 2941 . . . . 5 ((𝐿𝐺) ≠ 𝑉 ↔ ¬ (𝐿𝐺) = 𝑉)
2 lcfl6.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 lcfl6.o . . . . . . . 8 = ((ocH‘𝐾)‘𝑊)
4 lcfl6.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 lcfl6.v . . . . . . . 8 𝑉 = (Base‘𝑈)
6 lcfl6.s . . . . . . . 8 𝑆 = (Scalar‘𝑈)
7 lcfl6.z . . . . . . . 8 0 = (0g𝑈)
8 eqid 2737 . . . . . . . 8 (1r𝑆) = (1r𝑆)
9 lcfl6.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
10 lcfl6.l . . . . . . . 8 𝐿 = (LKer‘𝑈)
11 lcfl6.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1211ad2antrr 726 . . . . . . . 8 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 lcfl6.g . . . . . . . . 9 (𝜑𝐺𝐹)
1413ad2antrr 726 . . . . . . . 8 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → 𝐺𝐹)
15 lcfl6.c . . . . . . . . . . . . . 14 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
162, 3, 4, 5, 9, 10, 15, 11, 13lcfl2 41495 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝐶 ↔ (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))
1716biimpa 476 . . . . . . . . . . . 12 ((𝜑𝐺𝐶) → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉))
1817orcomd 872 . . . . . . . . . . 11 ((𝜑𝐺𝐶) → ((𝐿𝐺) = 𝑉 ∨ ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
1918ord 865 . . . . . . . . . 10 ((𝜑𝐺𝐶) → (¬ (𝐿𝐺) = 𝑉 → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
201, 19biimtrid 242 . . . . . . . . 9 ((𝜑𝐺𝐶) → ((𝐿𝐺) ≠ 𝑉 → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
2120imp 406 . . . . . . . 8 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉)
222, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 21dochkr1 41480 . . . . . . 7 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → ∃𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 })(𝐺𝑥) = (1r𝑆))
232, 4, 11dvhlmod 41112 . . . . . . . . . . . 12 (𝜑𝑈 ∈ LMod)
245, 9, 10, 23, 13lkrssv 39097 . . . . . . . . . . 11 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
252, 4, 5, 3dochssv 41357 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐺) ⊆ 𝑉) → ( ‘(𝐿𝐺)) ⊆ 𝑉)
2611, 24, 25syl2anc 584 . . . . . . . . . 10 (𝜑 → ( ‘(𝐿𝐺)) ⊆ 𝑉)
2726ssdifd 4145 . . . . . . . . 9 (𝜑 → (( ‘(𝐿𝐺)) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 }))
2827ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → (( ‘(𝐿𝐺)) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 }))
29 simprl 771 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → 𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
3028, 29sseldd 3984 . . . . . . 7 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
31 lcfl6.a . . . . . . . 8 + = (+g𝑈)
32 lcfl6.t . . . . . . . 8 · = ( ·𝑠𝑈)
33 lcfl6.r . . . . . . . 8 𝑅 = (Base‘𝑆)
3411ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3513ad3antrrr 730 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → 𝐺𝐹)
36 simprr 773 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → (𝐺𝑥) = (1r𝑆))
372, 3, 4, 5, 31, 32, 6, 8, 33, 7, 9, 10, 34, 35, 29, 36lcfl6lem 41500 . . . . . . 7 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
3822, 30, 37reximssdv 3173 . . . . . 6 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
3938ex 412 . . . . 5 ((𝜑𝐺𝐶) → ((𝐿𝐺) ≠ 𝑉 → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
401, 39biimtrrid 243 . . . 4 ((𝜑𝐺𝐶) → (¬ (𝐿𝐺) = 𝑉 → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
4140orrd 864 . . 3 ((𝜑𝐺𝐶) → ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
4241ex 412 . 2 (𝜑 → (𝐺𝐶 → ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
43 olc 869 . . . 4 ((𝐿𝐺) = 𝑉 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉))
4443, 16imbitrrid 246 . . 3 (𝜑 → ((𝐿𝐺) = 𝑉𝐺𝐶))
4511adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 eldifi 4131 . . . . . . . . . . 11 (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥𝑉)
4746adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑥𝑉)
4847snssd 4809 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → {𝑥} ⊆ 𝑉)
49 eqid 2737 . . . . . . . . . 10 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
502, 49, 4, 5, 3dochcl 41355 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑥} ⊆ 𝑉) → ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
5145, 48, 50syl2anc 584 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
522, 49, 3dochoc 41369 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘( ‘{𝑥}))) = ( ‘{𝑥}))
5345, 51, 52syl2anc 584 . . . . . . 7 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → ( ‘( ‘( ‘{𝑥}))) = ( ‘{𝑥}))
54533adant3 1133 . . . . . 6 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → ( ‘( ‘( ‘{𝑥}))) = ( ‘{𝑥}))
55 simp3 1139 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
5655fveq2d 6910 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → (𝐿𝐺) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
57 eqid 2737 . . . . . . . . . . 11 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))
58 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑥 ∈ (𝑉 ∖ { 0 }))
592, 3, 4, 5, 7, 31, 32, 10, 6, 33, 57, 45, 58dochsnkr2 41475 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = ( ‘{𝑥}))
60593adant3 1133 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = ( ‘{𝑥}))
6156, 60eqtrd 2777 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → (𝐿𝐺) = ( ‘{𝑥}))
6261fveq2d 6910 . . . . . . 7 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → ( ‘(𝐿𝐺)) = ( ‘( ‘{𝑥})))
6362fveq2d 6910 . . . . . 6 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → ( ‘( ‘(𝐿𝐺))) = ( ‘( ‘( ‘{𝑥}))))
6454, 63, 613eqtr4d 2787 . . . . 5 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
65133ad2ant1 1134 . . . . . 6 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → 𝐺𝐹)
6615, 65lcfl1 41494 . . . . 5 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
6764, 66mpbird 257 . . . 4 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → 𝐺𝐶)
6867rexlimdv3a 3159 . . 3 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → 𝐺𝐶))
6944, 68jaod 860 . 2 (𝜑 → (((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → 𝐺𝐶))
7042, 69impbid 212 1 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  cdif 3948  wss 3951  {csn 4626  cmpt 5225  ran crn 5686  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  1rcur 20178  LFnlclfn 39058  LKerclk 39086  HLchlt 39351  LHypclh 39986  DVecHcdvh 41080  DIsoHcdih 41230  ocHcoch 41349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-undef 8298  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lsatoms 38977  df-lshyp 38978  df-lfl 39059  df-lkr 39087  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161  df-tgrp 40745  df-tendo 40757  df-edring 40759  df-dveca 41005  df-disoa 41031  df-dvech 41081  df-dib 41141  df-dic 41175  df-dih 41231  df-doch 41350  df-djh 41397
This theorem is referenced by:  lcfl7N  41503  lcfrlem9  41552
  Copyright terms: Public domain W3C validator