Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6 Structured version   Visualization version   GIF version

Theorem lcfl6 38651
Description: Property of a functional with a closed kernel. Note that (𝐿𝐺) = 𝑉 means the functional is zero by lkr0f 36245. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6.h 𝐻 = (LHyp‘𝐾)
lcfl6.o = ((ocH‘𝐾)‘𝑊)
lcfl6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcfl6.v 𝑉 = (Base‘𝑈)
lcfl6.a + = (+g𝑈)
lcfl6.t · = ( ·𝑠𝑈)
lcfl6.s 𝑆 = (Scalar‘𝑈)
lcfl6.r 𝑅 = (Base‘𝑆)
lcfl6.z 0 = (0g𝑈)
lcfl6.f 𝐹 = (LFnl‘𝑈)
lcfl6.l 𝐿 = (LKer‘𝑈)
lcfl6.c 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
lcfl6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lcfl6.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lcfl6 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Distinct variable groups:   𝑣,𝑘,𝑤, +   𝑓,𝑘,𝑣,𝑤,𝑥,   𝑤, 0 ,𝑥   𝑥,𝐶   𝑓,𝐺,𝑥   𝑓,𝐹   𝑓,𝐿,𝑥   𝜑,𝑥   𝑅,𝑘,𝑣   𝑆,𝑘,𝑤,𝑥   𝑣,𝑉,𝑥   𝑥,𝑈   · ,𝑘,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑓,𝑘)   𝐶(𝑤,𝑣,𝑓,𝑘)   + (𝑥,𝑓)   𝑅(𝑥,𝑤,𝑓)   𝑆(𝑣,𝑓)   · (𝑥,𝑓)   𝑈(𝑤,𝑣,𝑓,𝑘)   𝐹(𝑥,𝑤,𝑣,𝑘)   𝐺(𝑤,𝑣,𝑘)   𝐻(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑤,𝑣,𝑓,𝑘)   𝐿(𝑤,𝑣,𝑘)   𝑉(𝑤,𝑓,𝑘)   𝑊(𝑥,𝑤,𝑣,𝑓,𝑘)   0 (𝑣,𝑓,𝑘)

Proof of Theorem lcfl6
StepHypRef Expression
1 df-ne 3017 . . . . 5 ((𝐿𝐺) ≠ 𝑉 ↔ ¬ (𝐿𝐺) = 𝑉)
2 lcfl6.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
3 lcfl6.o . . . . . . . 8 = ((ocH‘𝐾)‘𝑊)
4 lcfl6.u . . . . . . . 8 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 lcfl6.v . . . . . . . 8 𝑉 = (Base‘𝑈)
6 lcfl6.s . . . . . . . 8 𝑆 = (Scalar‘𝑈)
7 lcfl6.z . . . . . . . 8 0 = (0g𝑈)
8 eqid 2821 . . . . . . . 8 (1r𝑆) = (1r𝑆)
9 lcfl6.f . . . . . . . 8 𝐹 = (LFnl‘𝑈)
10 lcfl6.l . . . . . . . 8 𝐿 = (LKer‘𝑈)
11 lcfl6.k . . . . . . . . 9 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
1211ad2antrr 724 . . . . . . . 8 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 lcfl6.g . . . . . . . . 9 (𝜑𝐺𝐹)
1413ad2antrr 724 . . . . . . . 8 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → 𝐺𝐹)
15 lcfl6.c . . . . . . . . . . . . . 14 𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}
162, 3, 4, 5, 9, 10, 15, 11, 13lcfl2 38644 . . . . . . . . . . . . 13 (𝜑 → (𝐺𝐶 ↔ (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉)))
1716biimpa 479 . . . . . . . . . . . 12 ((𝜑𝐺𝐶) → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉))
1817orcomd 867 . . . . . . . . . . 11 ((𝜑𝐺𝐶) → ((𝐿𝐺) = 𝑉 ∨ ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
1918ord 860 . . . . . . . . . 10 ((𝜑𝐺𝐶) → (¬ (𝐿𝐺) = 𝑉 → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
201, 19syl5bi 244 . . . . . . . . 9 ((𝜑𝐺𝐶) → ((𝐿𝐺) ≠ 𝑉 → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉))
2120imp 409 . . . . . . . 8 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → ( ‘( ‘(𝐿𝐺))) ≠ 𝑉)
222, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 21dochkr1 38629 . . . . . . 7 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → ∃𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 })(𝐺𝑥) = (1r𝑆))
232, 4, 11dvhlmod 38261 . . . . . . . . . . . 12 (𝜑𝑈 ∈ LMod)
245, 9, 10, 23, 13lkrssv 36247 . . . . . . . . . . 11 (𝜑 → (𝐿𝐺) ⊆ 𝑉)
252, 4, 5, 3dochssv 38506 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐿𝐺) ⊆ 𝑉) → ( ‘(𝐿𝐺)) ⊆ 𝑉)
2611, 24, 25syl2anc 586 . . . . . . . . . 10 (𝜑 → ( ‘(𝐿𝐺)) ⊆ 𝑉)
2726ssdifd 4117 . . . . . . . . 9 (𝜑 → (( ‘(𝐿𝐺)) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 }))
2827ad3antrrr 728 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → (( ‘(𝐿𝐺)) ∖ { 0 }) ⊆ (𝑉 ∖ { 0 }))
29 simprl 769 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → 𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }))
3028, 29sseldd 3968 . . . . . . 7 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → 𝑥 ∈ (𝑉 ∖ { 0 }))
31 lcfl6.a . . . . . . . 8 + = (+g𝑈)
32 lcfl6.t . . . . . . . 8 · = ( ·𝑠𝑈)
33 lcfl6.r . . . . . . . 8 𝑅 = (Base‘𝑆)
3411ad3antrrr 728 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3513ad3antrrr 728 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → 𝐺𝐹)
36 simprr 771 . . . . . . . 8 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → (𝐺𝑥) = (1r𝑆))
372, 3, 4, 5, 31, 32, 6, 8, 33, 7, 9, 10, 34, 35, 29, 36lcfl6lem 38649 . . . . . . 7 ((((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) ∧ (𝑥 ∈ (( ‘(𝐿𝐺)) ∖ { 0 }) ∧ (𝐺𝑥) = (1r𝑆))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
3822, 30, 37reximssdv 3276 . . . . . 6 (((𝜑𝐺𝐶) ∧ (𝐿𝐺) ≠ 𝑉) → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
3938ex 415 . . . . 5 ((𝜑𝐺𝐶) → ((𝐿𝐺) ≠ 𝑉 → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
401, 39syl5bir 245 . . . 4 ((𝜑𝐺𝐶) → (¬ (𝐿𝐺) = 𝑉 → ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
4140orrd 859 . . 3 ((𝜑𝐺𝐶) → ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
4241ex 415 . 2 (𝜑 → (𝐺𝐶 → ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
43 olc 864 . . . 4 ((𝐿𝐺) = 𝑉 → (( ‘( ‘(𝐿𝐺))) ≠ 𝑉 ∨ (𝐿𝐺) = 𝑉))
4443, 16syl5ibr 248 . . 3 (𝜑 → ((𝐿𝐺) = 𝑉𝐺𝐶))
4511adantr 483 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
46 eldifi 4103 . . . . . . . . . . 11 (𝑥 ∈ (𝑉 ∖ { 0 }) → 𝑥𝑉)
4746adantl 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑥𝑉)
4847snssd 4742 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → {𝑥} ⊆ 𝑉)
49 eqid 2821 . . . . . . . . . 10 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
502, 49, 4, 5, 3dochcl 38504 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑥} ⊆ 𝑉) → ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
5145, 48, 50syl2anc 586 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
522, 49, 3dochoc 38518 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ‘{𝑥}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘( ‘{𝑥}))) = ( ‘{𝑥}))
5345, 51, 52syl2anc 586 . . . . . . 7 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → ( ‘( ‘( ‘{𝑥}))) = ( ‘{𝑥}))
54533adant3 1128 . . . . . 6 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → ( ‘( ‘( ‘{𝑥}))) = ( ‘{𝑥}))
55 simp3 1134 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))
5655fveq2d 6674 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → (𝐿𝐺) = (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))))
57 eqid 2821 . . . . . . . . . . 11 (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))
58 simpr 487 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → 𝑥 ∈ (𝑉 ∖ { 0 }))
592, 3, 4, 5, 7, 31, 32, 10, 6, 33, 57, 45, 58dochsnkr2 38624 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = ( ‘{𝑥}))
60593adant3 1128 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → (𝐿‘(𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) = ( ‘{𝑥}))
6156, 60eqtrd 2856 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → (𝐿𝐺) = ( ‘{𝑥}))
6261fveq2d 6674 . . . . . . 7 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → ( ‘(𝐿𝐺)) = ( ‘( ‘{𝑥})))
6362fveq2d 6674 . . . . . 6 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → ( ‘( ‘(𝐿𝐺))) = ( ‘( ‘( ‘{𝑥}))))
6454, 63, 613eqtr4d 2866 . . . . 5 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
65133ad2ant1 1129 . . . . . 6 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → 𝐺𝐹)
6615, 65lcfl1 38643 . . . . 5 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → (𝐺𝐶 ↔ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺)))
6764, 66mpbird 259 . . . 4 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 }) ∧ 𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → 𝐺𝐶)
6867rexlimdv3a 3286 . . 3 (𝜑 → (∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))) → 𝐺𝐶))
6944, 68jaod 855 . 2 (𝜑 → (((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥))))) → 𝐺𝐶))
7042, 69impbid 214 1 (𝜑 → (𝐺𝐶 ↔ ((𝐿𝐺) = 𝑉 ∨ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝐺 = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  {crab 3142  cdif 3933  wss 3936  {csn 4567  cmpt 5146  ran crn 5556  cfv 6355  crio 7113  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  1rcur 19251  LFnlclfn 36208  LKerclk 36236  HLchlt 36501  LHypclh 37135  DVecHcdvh 38229  DIsoHcdih 38379  ocHcoch 38498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-riotaBAD 36104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-undef 7939  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-0g 16715  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-cntz 18447  df-lsm 18761  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-drng 19504  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lvec 19875  df-lsatoms 36127  df-lshyp 36128  df-lfl 36209  df-lkr 36237  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651  df-lines 36652  df-psubsp 36654  df-pmap 36655  df-padd 36947  df-lhyp 37139  df-laut 37140  df-ldil 37255  df-ltrn 37256  df-trl 37310  df-tgrp 37894  df-tendo 37906  df-edring 37908  df-dveca 38154  df-disoa 38180  df-dvech 38230  df-dib 38290  df-dic 38324  df-dih 38380  df-doch 38499  df-djh 38546
This theorem is referenced by:  lcfl7N  38652  lcfrlem9  38701
  Copyright terms: Public domain W3C validator