![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkr | Structured version Visualization version GIF version |
Description: The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkr.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkr.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkr.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkr.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkr.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkr.s | ⊢ 𝑆 = (LSubSp‘𝐷) |
lclkr.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lclkr.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lclkr | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3983 | . . . 4 ⊢ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⊆ 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⊆ 𝐹) |
3 | lclkr.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
5 | lclkr.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lclkr.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
7 | eqid 2797 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
8 | lclkr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | lclkr.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | lclkr.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 8, 9, 10 | dvhlmod 37798 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | 5, 6, 7, 11 | ldualvbase 35814 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
13 | 2, 4, 12 | 3sstr4d 3941 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐷)) |
14 | eqid 2797 | . . . . . 6 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
15 | eqid 2797 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
16 | eqid 2797 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
17 | 14, 15, 16, 5 | lfl0f 35757 | . . . . 5 ⊢ (𝑈 ∈ LMod → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
18 | 11, 17 | syl 17 | . . . 4 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
19 | lclkr.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
20 | 8, 9, 19, 16, 10 | dochoc1 38049 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
21 | eqid 2797 | . . . . . . . 8 ⊢ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) | |
22 | lclkr.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
23 | 14, 15, 16, 5, 22 | lkr0f 35782 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
24 | 11, 17, 23 | syl2anc2 585 | . . . . . . . 8 ⊢ (𝜑 → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
25 | 21, 24 | mpbiri 259 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈)) |
26 | 25 | fveq2d 6549 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = ( ⊥ ‘(Base‘𝑈))) |
27 | 26 | fveq2d 6549 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
28 | 20, 27, 25 | 3eqtr4d 2843 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
29 | 3 | lcfl1lem 38179 | . . . 4 ⊢ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶 ↔ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) |
30 | 18, 28, 29 | sylanbrc 583 | . . 3 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶) |
31 | 30 | ne0d 4227 | . 2 ⊢ (𝜑 → 𝐶 ≠ ∅) |
32 | eqid 2797 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
33 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
34 | eqid 2797 | . . . . 5 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
35 | eqid 2797 | . . . . 5 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
36 | simpr1 1187 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝐷))) | |
37 | eqid 2797 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
38 | eqid 2797 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
39 | 14, 34, 6, 37, 38, 11 | ldualsbase 35821 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
40 | 39 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
41 | 36, 40 | eleqtrd 2887 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑈))) |
42 | simpr2 1188 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑎 ∈ 𝐶) | |
43 | 8, 19, 9, 5, 22, 6, 14, 34, 35, 3, 33, 41, 42 | lclkrlem1 38194 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐷)𝑎) ∈ 𝐶) |
44 | simpr3 1189 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑏 ∈ 𝐶) | |
45 | 8, 19, 9, 5, 22, 6, 32, 3, 33, 43, 44 | lclkrlem2 38220 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
46 | 45 | ralrimivvva 3161 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
47 | lclkr.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝐷) | |
48 | 37, 38, 7, 32, 35, 47 | islss 19400 | . 2 ⊢ (𝐶 ∈ 𝑆 ↔ (𝐶 ⊆ (Base‘𝐷) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶)) |
49 | 13, 31, 46, 48 | syl3anbrc 1336 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ≠ wne 2986 ∀wral 3107 {crab 3111 ⊆ wss 3865 ∅c0 4217 {csn 4478 × cxp 5448 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 +gcplusg 16398 Scalarcsca 16401 ·𝑠 cvsca 16402 0gc0g 16546 LModclmod 19328 LSubSpclss 19397 LFnlclfn 35745 LKerclk 35773 LDualcld 35811 HLchlt 36038 LHypclh 36672 DVecHcdvh 37766 ocHcoch 38035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-riotaBAD 35641 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-tpos 7750 df-undef 7797 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-map 8265 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-n0 11752 df-z 11836 df-uz 12098 df-fz 12747 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-0g 16548 df-mre 16690 df-mrc 16691 df-acs 16693 df-proset 17371 df-poset 17389 df-plt 17401 df-lub 17417 df-glb 17418 df-join 17419 df-meet 17420 df-p0 17482 df-p1 17483 df-lat 17489 df-clat 17551 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-submnd 17779 df-grp 17868 df-minusg 17869 df-sbg 17870 df-subg 18034 df-cntz 18192 df-oppg 18219 df-lsm 18495 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-oppr 19067 df-dvdsr 19085 df-unit 19086 df-invr 19116 df-dvr 19127 df-drng 19198 df-lmod 19330 df-lss 19398 df-lsp 19438 df-lvec 19569 df-lsatoms 35664 df-lshyp 35665 df-lcv 35707 df-lfl 35746 df-lkr 35774 df-ldual 35812 df-oposet 35864 df-ol 35866 df-oml 35867 df-covers 35954 df-ats 35955 df-atl 35986 df-cvlat 36010 df-hlat 36039 df-llines 36186 df-lplanes 36187 df-lvols 36188 df-lines 36189 df-psubsp 36191 df-pmap 36192 df-padd 36484 df-lhyp 36676 df-laut 36677 df-ldil 36792 df-ltrn 36793 df-trl 36847 df-tgrp 37431 df-tendo 37443 df-edring 37445 df-dveca 37691 df-disoa 37717 df-dvech 37767 df-dib 37827 df-dic 37861 df-dih 37917 df-doch 38036 df-djh 38083 |
This theorem is referenced by: lcdlvec 38279 lcd0v 38299 lcdlss 38307 lcdlsp 38309 mapdunirnN 38338 |
Copyright terms: Public domain | W3C validator |