![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkr | Structured version Visualization version GIF version |
Description: The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkr.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkr.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkr.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkr.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkr.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkr.s | ⊢ 𝑆 = (LSubSp‘𝐷) |
lclkr.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} |
lclkr.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lclkr | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4090 | . . . 4 ⊢ {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⊆ 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} ⊆ 𝐹) |
3 | lclkr.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)} | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = {𝑓 ∈ 𝐹 ∣ ( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓)}) |
5 | lclkr.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lclkr.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
7 | eqid 2735 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
8 | lclkr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | lclkr.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | lclkr.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 8, 9, 10 | dvhlmod 41093 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | 5, 6, 7, 11 | ldualvbase 39108 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
13 | 2, 4, 12 | 3sstr4d 4043 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐷)) |
14 | eqid 2735 | . . . . . 6 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
15 | eqid 2735 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
16 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
17 | 14, 15, 16, 5 | lfl0f 39051 | . . . . 5 ⊢ (𝑈 ∈ LMod → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
18 | 11, 17 | syl 17 | . . . 4 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
19 | lclkr.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
20 | 8, 9, 19, 16, 10 | dochoc1 41344 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
21 | eqid 2735 | . . . . . . . 8 ⊢ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) | |
22 | lclkr.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
23 | 14, 15, 16, 5, 22 | lkr0f 39076 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
24 | 11, 17, 23 | syl2anc2 585 | . . . . . . . 8 ⊢ (𝜑 → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
25 | 21, 24 | mpbiri 258 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈)) |
26 | 25 | fveq2d 6911 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = ( ⊥ ‘(Base‘𝑈))) |
27 | 26 | fveq2d 6911 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
28 | 20, 27, 25 | 3eqtr4d 2785 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
29 | 3 | lcfl1lem 41474 | . . . 4 ⊢ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶 ↔ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) |
30 | 18, 28, 29 | sylanbrc 583 | . . 3 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶) |
31 | 30 | ne0d 4348 | . 2 ⊢ (𝜑 → 𝐶 ≠ ∅) |
32 | eqid 2735 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
33 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
34 | eqid 2735 | . . . . 5 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
35 | eqid 2735 | . . . . 5 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
36 | simpr1 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝐷))) | |
37 | eqid 2735 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
38 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
39 | 14, 34, 6, 37, 38, 11 | ldualsbase 39115 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
40 | 39 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
41 | 36, 40 | eleqtrd 2841 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑈))) |
42 | simpr2 1194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑎 ∈ 𝐶) | |
43 | 8, 19, 9, 5, 22, 6, 14, 34, 35, 3, 33, 41, 42 | lclkrlem1 41489 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐷)𝑎) ∈ 𝐶) |
44 | simpr3 1195 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑏 ∈ 𝐶) | |
45 | 8, 19, 9, 5, 22, 6, 32, 3, 33, 43, 44 | lclkrlem2 41515 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
46 | 45 | ralrimivvva 3203 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
47 | lclkr.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝐷) | |
48 | 37, 38, 7, 32, 35, 47 | islss 20950 | . 2 ⊢ (𝐶 ∈ 𝑆 ↔ (𝐶 ⊆ (Base‘𝐷) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶)) |
49 | 13, 31, 46, 48 | syl3anbrc 1342 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 {crab 3433 ⊆ wss 3963 ∅c0 4339 {csn 4631 × cxp 5687 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17486 LModclmod 20875 LSubSpclss 20947 LFnlclfn 39039 LKerclk 39067 LDualcld 39105 HLchlt 39332 LHypclh 39967 DVecHcdvh 41061 ocHcoch 41330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-undef 8297 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17488 df-mre 17631 df-mrc 17632 df-acs 17634 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cntz 19348 df-oppg 19377 df-lsm 19669 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-dvdsr 20374 df-unit 20375 df-invr 20405 df-dvr 20418 df-nzr 20530 df-rlreg 20711 df-domn 20712 df-drng 20748 df-lmod 20877 df-lss 20948 df-lsp 20988 df-lvec 21120 df-lsatoms 38958 df-lshyp 38959 df-lcv 39001 df-lfl 39040 df-lkr 39068 df-ldual 39106 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tgrp 40726 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 df-djh 41378 |
This theorem is referenced by: lcdlvec 41574 lcd0v 41594 lcdlss 41602 lcdlsp 41604 mapdunirnN 41633 |
Copyright terms: Public domain | W3C validator |