|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrs | Structured version Visualization version GIF version | ||
| Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑅 is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 41536 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 41536 a special case of this? (Contributed by NM, 29-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| lclkrs.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| lclkrs.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | 
| lclkrs.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| lclkrs.s | ⊢ 𝑆 = (LSubSp‘𝑈) | 
| lclkrs.f | ⊢ 𝐹 = (LFnl‘𝑈) | 
| lclkrs.l | ⊢ 𝐿 = (LKer‘𝑈) | 
| lclkrs.d | ⊢ 𝐷 = (LDual‘𝑈) | 
| lclkrs.t | ⊢ 𝑇 = (LSubSp‘𝐷) | 
| lclkrs.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} | 
| lclkrs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| lclkrs.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) | 
| Ref | Expression | 
|---|---|
| lclkrs | ⊢ (𝜑 → 𝐶 ∈ 𝑇) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab2 4079 | . . . 4 ⊢ {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} ⊆ 𝐹 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} ⊆ 𝐹) | 
| 3 | lclkrs.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)}) | 
| 5 | lclkrs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 6 | lclkrs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
| 7 | eqid 2736 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 8 | lclkrs.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | lclkrs.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 10 | lclkrs.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 8, 9, 10 | dvhlmod 41113 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) | 
| 12 | 5, 6, 7, 11 | ldualvbase 39128 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) | 
| 13 | 2, 4, 12 | 3sstr4d 4038 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐷)) | 
| 14 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 15 | eqid 2736 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
| 16 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 17 | 14, 15, 16, 5 | lfl0f 39071 | . . . . 5 ⊢ (𝑈 ∈ LMod → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) | 
| 18 | 11, 17 | syl 17 | . . . 4 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) | 
| 19 | lclkrs.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 20 | 8, 9, 19, 16, 10 | dochoc1 41364 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) | 
| 21 | eqidd 2737 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) | |
| 22 | lclkrs.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
| 23 | 14, 15, 16, 5, 22 | lkr0f 39096 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) | 
| 24 | 11, 18, 23 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) | 
| 25 | 21, 24 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈)) | 
| 26 | 25 | fveq2d 6909 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = ( ⊥ ‘(Base‘𝑈))) | 
| 27 | 26 | fveq2d 6909 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) | 
| 28 | 20, 27, 25 | 3eqtr4d 2786 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) | 
| 29 | eqid 2736 | . . . . . . . 8 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 30 | 8, 9, 19, 16, 29 | doch1 41362 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘(Base‘𝑈)) = {(0g‘𝑈)}) | 
| 31 | 10, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(Base‘𝑈)) = {(0g‘𝑈)}) | 
| 32 | 26, 31 | eqtrd 2776 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = {(0g‘𝑈)}) | 
| 33 | lclkrs.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
| 34 | lclkrs.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 35 | 29, 34 | lss0ss 20948 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑅 ∈ 𝑆) → {(0g‘𝑈)} ⊆ 𝑅) | 
| 36 | 11, 33, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {(0g‘𝑈)} ⊆ 𝑅) | 
| 37 | 32, 36 | eqsstrd 4017 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) ⊆ 𝑅) | 
| 38 | 3 | lcfls1lem 41537 | . . . 4 ⊢ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶 ↔ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) ∧ ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) ⊆ 𝑅)) | 
| 39 | 18, 28, 37, 38 | syl3anbrc 1343 | . . 3 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶) | 
| 40 | 39 | ne0d 4341 | . 2 ⊢ (𝜑 → 𝐶 ≠ ∅) | 
| 41 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 42 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
| 43 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 44 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑅 ∈ 𝑆) | 
| 45 | simpr3 1196 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑏 ∈ 𝐶) | |
| 46 | eqid 2736 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 47 | simpr2 1195 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑎 ∈ 𝐶) | |
| 48 | simpr1 1194 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝐷))) | |
| 49 | eqid 2736 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 50 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
| 51 | 14, 41, 6, 49, 50, 11 | ldualsbase 39135 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) | 
| 52 | 51 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) | 
| 53 | 48, 52 | eleqtrd 2842 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑈))) | 
| 54 | 8, 19, 9, 34, 5, 22, 6, 14, 41, 42, 3, 43, 44, 47, 53 | lclkrslem1 41540 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐷)𝑎) ∈ 𝐶) | 
| 55 | 8, 19, 9, 34, 5, 22, 6, 14, 41, 42, 3, 43, 44, 45, 46, 54 | lclkrslem2 41541 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) | 
| 56 | 55 | ralrimivvva 3204 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) | 
| 57 | lclkrs.t | . . 3 ⊢ 𝑇 = (LSubSp‘𝐷) | |
| 58 | 49, 50, 7, 46, 42, 57 | islss 20933 | . 2 ⊢ (𝐶 ∈ 𝑇 ↔ (𝐶 ⊆ (Base‘𝐷) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶)) | 
| 59 | 13, 40, 56, 58 | syl3anbrc 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 {crab 3435 ⊆ wss 3950 ∅c0 4332 {csn 4625 × cxp 5682 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 Scalarcsca 17301 ·𝑠 cvsca 17302 0gc0g 17485 LModclmod 20859 LSubSpclss 20930 LFnlclfn 39059 LKerclk 39087 LDualcld 39125 HLchlt 39352 LHypclh 39987 DVecHcdvh 41081 ocHcoch 41350 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-riotaBAD 38955 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-undef 8299 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-0g 17487 df-mre 17630 df-mrc 17631 df-acs 17633 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-cntz 19336 df-oppg 19365 df-lsm 19655 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-dvr 20402 df-nzr 20514 df-rlreg 20695 df-domn 20696 df-drng 20732 df-lmod 20861 df-lss 20931 df-lsp 20971 df-lvec 21103 df-lsatoms 38978 df-lshyp 38979 df-lcv 39021 df-lfl 39060 df-lkr 39088 df-ldual 39126 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 df-lvols 39503 df-lines 39504 df-psubsp 39506 df-pmap 39507 df-padd 39799 df-lhyp 39991 df-laut 39992 df-ldil 40107 df-ltrn 40108 df-trl 40162 df-tgrp 40746 df-tendo 40758 df-edring 40760 df-dveca 41006 df-disoa 41032 df-dvech 41082 df-dib 41142 df-dic 41176 df-dih 41232 df-doch 41351 df-djh 41398 | 
| This theorem is referenced by: lclkrs2 41543 mapddlssN 41643 | 
| Copyright terms: Public domain | W3C validator |