Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrs | Structured version Visualization version GIF version |
Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑅 is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 39547 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 39547 a special case of this? (Contributed by NM, 29-Jan-2015.) |
Ref | Expression |
---|---|
lclkrs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrs.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrs.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrs.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
lclkrs.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrs.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrs.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrs.t | ⊢ 𝑇 = (LSubSp‘𝐷) |
lclkrs.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} |
lclkrs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrs.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
Ref | Expression |
---|---|
lclkrs | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4013 | . . . 4 ⊢ {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} ⊆ 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} ⊆ 𝐹) |
3 | lclkrs.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)}) |
5 | lclkrs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lclkrs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
7 | eqid 2738 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
8 | lclkrs.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | lclkrs.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | lclkrs.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 8, 9, 10 | dvhlmod 39124 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | 5, 6, 7, 11 | ldualvbase 37140 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
13 | 2, 4, 12 | 3sstr4d 3968 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐷)) |
14 | eqid 2738 | . . . . . 6 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
15 | eqid 2738 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
16 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
17 | 14, 15, 16, 5 | lfl0f 37083 | . . . . 5 ⊢ (𝑈 ∈ LMod → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
18 | 11, 17 | syl 17 | . . . 4 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
19 | lclkrs.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
20 | 8, 9, 19, 16, 10 | dochoc1 39375 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
21 | eqidd 2739 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) | |
22 | lclkrs.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
23 | 14, 15, 16, 5, 22 | lkr0f 37108 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
24 | 11, 18, 23 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
25 | 21, 24 | mpbird 256 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈)) |
26 | 25 | fveq2d 6778 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = ( ⊥ ‘(Base‘𝑈))) |
27 | 26 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
28 | 20, 27, 25 | 3eqtr4d 2788 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
29 | eqid 2738 | . . . . . . . 8 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
30 | 8, 9, 19, 16, 29 | doch1 39373 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘(Base‘𝑈)) = {(0g‘𝑈)}) |
31 | 10, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(Base‘𝑈)) = {(0g‘𝑈)}) |
32 | 26, 31 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = {(0g‘𝑈)}) |
33 | lclkrs.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
34 | lclkrs.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑈) | |
35 | 29, 34 | lss0ss 20210 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑅 ∈ 𝑆) → {(0g‘𝑈)} ⊆ 𝑅) |
36 | 11, 33, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {(0g‘𝑈)} ⊆ 𝑅) |
37 | 32, 36 | eqsstrd 3959 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) ⊆ 𝑅) |
38 | 3 | lcfls1lem 39548 | . . . 4 ⊢ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶 ↔ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) ∧ ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) ⊆ 𝑅)) |
39 | 18, 28, 37, 38 | syl3anbrc 1342 | . . 3 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶) |
40 | 39 | ne0d 4269 | . 2 ⊢ (𝜑 → 𝐶 ≠ ∅) |
41 | eqid 2738 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
42 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
43 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
44 | 33 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑅 ∈ 𝑆) |
45 | simpr3 1195 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑏 ∈ 𝐶) | |
46 | eqid 2738 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
47 | simpr2 1194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑎 ∈ 𝐶) | |
48 | simpr1 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝐷))) | |
49 | eqid 2738 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
50 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
51 | 14, 41, 6, 49, 50, 11 | ldualsbase 37147 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
52 | 51 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
53 | 48, 52 | eleqtrd 2841 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑈))) |
54 | 8, 19, 9, 34, 5, 22, 6, 14, 41, 42, 3, 43, 44, 47, 53 | lclkrslem1 39551 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐷)𝑎) ∈ 𝐶) |
55 | 8, 19, 9, 34, 5, 22, 6, 14, 41, 42, 3, 43, 44, 45, 46, 54 | lclkrslem2 39552 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
56 | 55 | ralrimivvva 3127 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
57 | lclkrs.t | . . 3 ⊢ 𝑇 = (LSubSp‘𝐷) | |
58 | 49, 50, 7, 46, 42, 57 | islss 20196 | . 2 ⊢ (𝐶 ∈ 𝑇 ↔ (𝐶 ⊆ (Base‘𝐷) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶)) |
59 | 13, 40, 56, 58 | syl3anbrc 1342 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 ⊆ wss 3887 ∅c0 4256 {csn 4561 × cxp 5587 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 LModclmod 20123 LSubSpclss 20193 LFnlclfn 37071 LKerclk 37099 LDualcld 37137 HLchlt 37364 LHypclh 37998 DVecHcdvh 39092 ocHcoch 39361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-undef 8089 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mre 17295 df-mrc 17296 df-acs 17298 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-cntz 18923 df-oppg 18950 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lvec 20365 df-lsatoms 36990 df-lshyp 36991 df-lcv 37033 df-lfl 37072 df-lkr 37100 df-ldual 37138 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tgrp 38757 df-tendo 38769 df-edring 38771 df-dveca 39017 df-disoa 39043 df-dvech 39093 df-dib 39153 df-dic 39187 df-dih 39243 df-doch 39362 df-djh 39409 |
This theorem is referenced by: lclkrs2 39554 mapddlssN 39654 |
Copyright terms: Public domain | W3C validator |