| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrs | Structured version Visualization version GIF version | ||
| Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑅 is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 41557 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 41557 a special case of this? (Contributed by NM, 29-Jan-2015.) |
| Ref | Expression |
|---|---|
| lclkrs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| lclkrs.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| lclkrs.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| lclkrs.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| lclkrs.f | ⊢ 𝐹 = (LFnl‘𝑈) |
| lclkrs.l | ⊢ 𝐿 = (LKer‘𝑈) |
| lclkrs.d | ⊢ 𝐷 = (LDual‘𝑈) |
| lclkrs.t | ⊢ 𝑇 = (LSubSp‘𝐷) |
| lclkrs.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} |
| lclkrs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| lclkrs.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| lclkrs | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4060 | . . . 4 ⊢ {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} ⊆ 𝐹 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} ⊆ 𝐹) |
| 3 | lclkrs.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)}) |
| 5 | lclkrs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
| 6 | lclkrs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
| 7 | eqid 2736 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 8 | lclkrs.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | lclkrs.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 10 | lclkrs.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 8, 9, 10 | dvhlmod 41134 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 12 | 5, 6, 7, 11 | ldualvbase 39149 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
| 13 | 2, 4, 12 | 3sstr4d 4019 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐷)) |
| 14 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 15 | eqid 2736 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
| 16 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 17 | 14, 15, 16, 5 | lfl0f 39092 | . . . . 5 ⊢ (𝑈 ∈ LMod → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
| 18 | 11, 17 | syl 17 | . . . 4 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
| 19 | lclkrs.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 20 | 8, 9, 19, 16, 10 | dochoc1 41385 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
| 21 | eqidd 2737 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) | |
| 22 | lclkrs.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
| 23 | 14, 15, 16, 5, 22 | lkr0f 39117 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
| 24 | 11, 18, 23 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
| 25 | 21, 24 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈)) |
| 26 | 25 | fveq2d 6885 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = ( ⊥ ‘(Base‘𝑈))) |
| 27 | 26 | fveq2d 6885 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
| 28 | 20, 27, 25 | 3eqtr4d 2781 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
| 29 | eqid 2736 | . . . . . . . 8 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 30 | 8, 9, 19, 16, 29 | doch1 41383 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘(Base‘𝑈)) = {(0g‘𝑈)}) |
| 31 | 10, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(Base‘𝑈)) = {(0g‘𝑈)}) |
| 32 | 26, 31 | eqtrd 2771 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = {(0g‘𝑈)}) |
| 33 | lclkrs.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
| 34 | lclkrs.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 35 | 29, 34 | lss0ss 20911 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑅 ∈ 𝑆) → {(0g‘𝑈)} ⊆ 𝑅) |
| 36 | 11, 33, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {(0g‘𝑈)} ⊆ 𝑅) |
| 37 | 32, 36 | eqsstrd 3998 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) ⊆ 𝑅) |
| 38 | 3 | lcfls1lem 41558 | . . . 4 ⊢ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶 ↔ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) ∧ ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) ⊆ 𝑅)) |
| 39 | 18, 28, 37, 38 | syl3anbrc 1344 | . . 3 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶) |
| 40 | 39 | ne0d 4322 | . 2 ⊢ (𝜑 → 𝐶 ≠ ∅) |
| 41 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 42 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
| 43 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 44 | 33 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑅 ∈ 𝑆) |
| 45 | simpr3 1197 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑏 ∈ 𝐶) | |
| 46 | eqid 2736 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 47 | simpr2 1196 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑎 ∈ 𝐶) | |
| 48 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝐷))) | |
| 49 | eqid 2736 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 50 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
| 51 | 14, 41, 6, 49, 50, 11 | ldualsbase 39156 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
| 52 | 51 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
| 53 | 48, 52 | eleqtrd 2837 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑈))) |
| 54 | 8, 19, 9, 34, 5, 22, 6, 14, 41, 42, 3, 43, 44, 47, 53 | lclkrslem1 41561 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐷)𝑎) ∈ 𝐶) |
| 55 | 8, 19, 9, 34, 5, 22, 6, 14, 41, 42, 3, 43, 44, 45, 46, 54 | lclkrslem2 41562 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
| 56 | 55 | ralrimivvva 3191 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
| 57 | lclkrs.t | . . 3 ⊢ 𝑇 = (LSubSp‘𝐷) | |
| 58 | 49, 50, 7, 46, 42, 57 | islss 20896 | . 2 ⊢ (𝐶 ∈ 𝑇 ↔ (𝐶 ⊆ (Base‘𝐷) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶)) |
| 59 | 13, 40, 56, 58 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 {crab 3420 ⊆ wss 3931 ∅c0 4313 {csn 4606 × cxp 5657 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 Scalarcsca 17279 ·𝑠 cvsca 17280 0gc0g 17458 LModclmod 20822 LSubSpclss 20893 LFnlclfn 39080 LKerclk 39108 LDualcld 39146 HLchlt 39373 LHypclh 40008 DVecHcdvh 41102 ocHcoch 41371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-riotaBAD 38976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-0g 17460 df-mre 17603 df-mrc 17604 df-acs 17606 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-oppg 19334 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-nzr 20478 df-rlreg 20659 df-domn 20660 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lsatoms 38999 df-lshyp 39000 df-lcv 39042 df-lfl 39081 df-lkr 39109 df-ldual 39147 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-llines 39522 df-lplanes 39523 df-lvols 39524 df-lines 39525 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 df-tgrp 40767 df-tendo 40779 df-edring 40781 df-dveca 41027 df-disoa 41053 df-dvech 41103 df-dib 41163 df-dic 41197 df-dih 41253 df-doch 41372 df-djh 41419 |
| This theorem is referenced by: lclkrs2 41564 mapddlssN 41664 |
| Copyright terms: Public domain | W3C validator |