Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrs | Structured version Visualization version GIF version |
Description: The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑅 is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 39794 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 39794 a special case of this? (Contributed by NM, 29-Jan-2015.) |
Ref | Expression |
---|---|
lclkrs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrs.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrs.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrs.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
lclkrs.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrs.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrs.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrs.t | ⊢ 𝑇 = (LSubSp‘𝐷) |
lclkrs.c | ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} |
lclkrs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrs.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
Ref | Expression |
---|---|
lclkrs | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4024 | . . . 4 ⊢ {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} ⊆ 𝐹 | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} ⊆ 𝐹) |
3 | lclkrs.c | . . . 4 ⊢ 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)} | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐶 = {𝑓 ∈ 𝐹 ∣ (( ⊥ ‘( ⊥ ‘(𝐿‘𝑓))) = (𝐿‘𝑓) ∧ ( ⊥ ‘(𝐿‘𝑓)) ⊆ 𝑅)}) |
5 | lclkrs.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑈) | |
6 | lclkrs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
7 | eqid 2736 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
8 | lclkrs.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | lclkrs.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
10 | lclkrs.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 8, 9, 10 | dvhlmod 39371 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
12 | 5, 6, 7, 11 | ldualvbase 37386 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
13 | 2, 4, 12 | 3sstr4d 3978 | . 2 ⊢ (𝜑 → 𝐶 ⊆ (Base‘𝐷)) |
14 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
15 | eqid 2736 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑈)) = (0g‘(Scalar‘𝑈)) | |
16 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
17 | 14, 15, 16, 5 | lfl0f 37329 | . . . . 5 ⊢ (𝑈 ∈ LMod → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
18 | 11, 17 | syl 17 | . . . 4 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) |
19 | lclkrs.o | . . . . . 6 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
20 | 8, 9, 19, 16, 10 | dochoc1 39622 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(Base‘𝑈))) = (Base‘𝑈)) |
21 | eqidd 2737 | . . . . . . . 8 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) | |
22 | lclkrs.l | . . . . . . . . . 10 ⊢ 𝐿 = (LKer‘𝑈) | |
23 | 14, 15, 16, 5, 22 | lkr0f 37354 | . . . . . . . . 9 ⊢ ((𝑈 ∈ LMod ∧ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹) → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
24 | 11, 18, 23 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ((𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈) ↔ ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) = ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
25 | 21, 24 | mpbird 256 | . . . . . . 7 ⊢ (𝜑 → (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) = (Base‘𝑈)) |
26 | 25 | fveq2d 6823 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = ( ⊥ ‘(Base‘𝑈))) |
27 | 26 | fveq2d 6823 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = ( ⊥ ‘( ⊥ ‘(Base‘𝑈)))) |
28 | 20, 27, 25 | 3eqtr4d 2786 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) |
29 | eqid 2736 | . . . . . . . 8 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
30 | 8, 9, 19, 16, 29 | doch1 39620 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘(Base‘𝑈)) = {(0g‘𝑈)}) |
31 | 10, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → ( ⊥ ‘(Base‘𝑈)) = {(0g‘𝑈)}) |
32 | 26, 31 | eqtrd 2776 | . . . . 5 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) = {(0g‘𝑈)}) |
33 | lclkrs.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
34 | lclkrs.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑈) | |
35 | 29, 34 | lss0ss 20308 | . . . . . 6 ⊢ ((𝑈 ∈ LMod ∧ 𝑅 ∈ 𝑆) → {(0g‘𝑈)} ⊆ 𝑅) |
36 | 11, 33, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {(0g‘𝑈)} ⊆ 𝑅) |
37 | 32, 36 | eqsstrd 3969 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) ⊆ 𝑅) |
38 | 3 | lcfls1lem 39795 | . . . 4 ⊢ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶 ↔ (((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐹 ∧ ( ⊥ ‘( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})))) = (𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))})) ∧ ( ⊥ ‘(𝐿‘((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}))) ⊆ 𝑅)) |
39 | 18, 28, 37, 38 | syl3anbrc 1342 | . . 3 ⊢ (𝜑 → ((Base‘𝑈) × {(0g‘(Scalar‘𝑈))}) ∈ 𝐶) |
40 | 39 | ne0d 4281 | . 2 ⊢ (𝜑 → 𝐶 ≠ ∅) |
41 | eqid 2736 | . . . 4 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
42 | eqid 2736 | . . . 4 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
43 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
44 | 33 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑅 ∈ 𝑆) |
45 | simpr3 1195 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑏 ∈ 𝐶) | |
46 | eqid 2736 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
47 | simpr2 1194 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑎 ∈ 𝐶) | |
48 | simpr1 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝐷))) | |
49 | eqid 2736 | . . . . . . . 8 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
50 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝐷)) | |
51 | 14, 41, 6, 49, 50, 11 | ldualsbase 37393 | . . . . . . 7 ⊢ (𝜑 → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
52 | 51 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (Base‘(Scalar‘𝐷)) = (Base‘(Scalar‘𝑈))) |
53 | 48, 52 | eleqtrd 2839 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → 𝑥 ∈ (Base‘(Scalar‘𝑈))) |
54 | 8, 19, 9, 34, 5, 22, 6, 14, 41, 42, 3, 43, 44, 47, 53 | lclkrslem1 39798 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → (𝑥( ·𝑠 ‘𝐷)𝑎) ∈ 𝐶) |
55 | 8, 19, 9, 34, 5, 22, 6, 14, 41, 42, 3, 43, 44, 45, 46, 54 | lclkrslem2 39799 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐷)) ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐶)) → ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
56 | 55 | ralrimivvva 3196 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶) |
57 | lclkrs.t | . . 3 ⊢ 𝑇 = (LSubSp‘𝐷) | |
58 | 49, 50, 7, 46, 42, 57 | islss 20294 | . 2 ⊢ (𝐶 ∈ 𝑇 ↔ (𝐶 ⊆ (Base‘𝐷) ∧ 𝐶 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝐷))∀𝑎 ∈ 𝐶 ∀𝑏 ∈ 𝐶 ((𝑥( ·𝑠 ‘𝐷)𝑎)(+g‘𝐷)𝑏) ∈ 𝐶)) |
59 | 13, 40, 56, 58 | syl3anbrc 1342 | 1 ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 {crab 3403 ⊆ wss 3897 ∅c0 4268 {csn 4572 × cxp 5612 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 +gcplusg 17051 Scalarcsca 17054 ·𝑠 cvsca 17055 0gc0g 17239 LModclmod 20221 LSubSpclss 20291 LFnlclfn 37317 LKerclk 37345 LDualcld 37383 HLchlt 37610 LHypclh 38245 DVecHcdvh 39339 ocHcoch 39608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-riotaBAD 37213 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-tpos 8104 df-undef 8151 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-sca 17067 df-vsca 17068 df-0g 17241 df-mre 17384 df-mrc 17385 df-acs 17387 df-proset 18102 df-poset 18120 df-plt 18137 df-lub 18153 df-glb 18154 df-join 18155 df-meet 18156 df-p0 18232 df-p1 18233 df-lat 18239 df-clat 18306 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-submnd 18520 df-grp 18668 df-minusg 18669 df-sbg 18670 df-subg 18840 df-cntz 19011 df-oppg 19038 df-lsm 19329 df-cmn 19475 df-abl 19476 df-mgp 19808 df-ur 19825 df-ring 19872 df-oppr 19949 df-dvdsr 19970 df-unit 19971 df-invr 20001 df-dvr 20012 df-drng 20087 df-lmod 20223 df-lss 20292 df-lsp 20332 df-lvec 20463 df-lsatoms 37236 df-lshyp 37237 df-lcv 37279 df-lfl 37318 df-lkr 37346 df-ldual 37384 df-oposet 37436 df-ol 37438 df-oml 37439 df-covers 37526 df-ats 37527 df-atl 37558 df-cvlat 37582 df-hlat 37611 df-llines 37759 df-lplanes 37760 df-lvols 37761 df-lines 37762 df-psubsp 37764 df-pmap 37765 df-padd 38057 df-lhyp 38249 df-laut 38250 df-ldil 38365 df-ltrn 38366 df-trl 38420 df-tgrp 39004 df-tendo 39016 df-edring 39018 df-dveca 39264 df-disoa 39290 df-dvech 39340 df-dib 39400 df-dic 39434 df-dih 39490 df-doch 39609 df-djh 39656 |
This theorem is referenced by: lclkrs2 39801 mapddlssN 39901 |
Copyright terms: Public domain | W3C validator |