![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpexle2 | Structured version Visualization version GIF version |
Description: There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.) |
Ref | Expression |
---|---|
lhpex1.l | ⊢ ≤ = (le‘𝐾) |
lhpex1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpex1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpexle2 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpex1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
2 | lhpex1.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | lhpex1.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhpexle1 39608 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋)) |
5 | 1, 2, 3 | lhpexle1 39608 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑌)) |
6 | 5 | adantr 479 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑌)) |
7 | 1, 2, 3 | lhpexle2lem 39609 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑋)) |
8 | 7 | 3expa 1115 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) ∧ (𝑋 ∈ 𝐴 ∧ 𝑋 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑋)) |
9 | 6, 8 | lhpexle1lem 39607 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑋)) |
10 | 3ancomb 1096 | . . . 4 ⊢ ((𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑋) ↔ (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) | |
11 | 10 | rexbii 3083 | . . 3 ⊢ (∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑌 ∧ 𝑝 ≠ 𝑋) ↔ ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) |
12 | 9, 11 | sylib 217 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ≤ 𝑊)) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) |
13 | 4, 12 | lhpexle1lem 39607 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑊 ∧ 𝑝 ≠ 𝑋 ∧ 𝑝 ≠ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 class class class wbr 5149 ‘cfv 6549 lecple 17243 Atomscatm 38862 HLchlt 38949 LHypclh 39584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-oposet 38775 df-ol 38777 df-oml 38778 df-covers 38865 df-ats 38866 df-atl 38897 df-cvlat 38921 df-hlat 38950 df-lhyp 39588 |
This theorem is referenced by: lhpexle3lem 39611 lhpexle3 39612 cdlemj3 40423 |
Copyright terms: Public domain | W3C validator |