Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle2 Structured version   Visualization version   GIF version

Theorem lhpexle2 36159
Description: There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem lhpexle2
StepHypRef Expression
1 lhpex1.l . . 3 = (le‘𝐾)
2 lhpex1.a . . 3 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle1 36157 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
51, 2, 3lhpexle1 36157 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌))
65adantr 474 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌))
71, 2, 3lhpexle2lem 36158 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
873expa 1108 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
96, 8lhpexle1lem 36156 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
10 3ancomb 1084 . . . 4 ((𝑝 𝑊𝑝𝑌𝑝𝑋) ↔ (𝑝 𝑊𝑝𝑋𝑝𝑌))
1110rexbii 3223 . . 3 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋) ↔ ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
129, 11sylib 210 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
134, 12lhpexle1lem 36156 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2106  wne 2968  wrex 3090   class class class wbr 4886  cfv 6135  lecple 16345  Atomscatm 35412  HLchlt 35499  LHypclh 36133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-oposet 35325  df-ol 35327  df-oml 35328  df-covers 35415  df-ats 35416  df-atl 35447  df-cvlat 35471  df-hlat 35500  df-lhyp 36137
This theorem is referenced by:  lhpexle3lem  36160  lhpexle3  36161  cdlemj3  36972
  Copyright terms: Public domain W3C validator