Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle2 Structured version   Visualization version   GIF version

Theorem lhpexle2 37303
Description: There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem lhpexle2
StepHypRef Expression
1 lhpex1.l . . 3 = (le‘𝐾)
2 lhpex1.a . . 3 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle1 37301 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
51, 2, 3lhpexle1 37301 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌))
65adantr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌))
71, 2, 3lhpexle2lem 37302 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
873expa 1115 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
96, 8lhpexle1lem 37300 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
10 3ancomb 1096 . . . 4 ((𝑝 𝑊𝑝𝑌𝑝𝑋) ↔ (𝑝 𝑊𝑝𝑋𝑝𝑌))
1110rexbii 3210 . . 3 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋) ↔ ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
129, 11sylib 221 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
134, 12lhpexle1lem 37300 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107   class class class wbr 5030  cfv 6324  lecple 16564  Atomscatm 36556  HLchlt 36643  LHypclh 37277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36469  df-ol 36471  df-oml 36472  df-covers 36559  df-ats 36560  df-atl 36591  df-cvlat 36615  df-hlat 36644  df-lhyp 37281
This theorem is referenced by:  lhpexle3lem  37304  lhpexle3  37305  cdlemj3  38116
  Copyright terms: Public domain W3C validator