Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexle2 Structured version   Visualization version   GIF version

Theorem lhpexle2 39610
Description: There exists atom under a co-atom different from any two other elements. (Contributed by NM, 24-Jul-2013.)
Hypotheses
Ref Expression
lhpex1.l = (le‘𝐾)
lhpex1.a 𝐴 = (Atoms‘𝐾)
lhpex1.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexle2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Distinct variable groups:   ,𝑝   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   𝑊,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem lhpexle2
StepHypRef Expression
1 lhpex1.l . . 3 = (le‘𝐾)
2 lhpex1.a . . 3 𝐴 = (Atoms‘𝐾)
3 lhpex1.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexle1 39608 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋))
51, 2, 3lhpexle1 39608 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌))
65adantr 479 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌))
71, 2, 3lhpexle2lem 39609 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
873expa 1115 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) ∧ (𝑋𝐴𝑋 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
96, 8lhpexle1lem 39607 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋))
10 3ancomb 1096 . . . 4 ((𝑝 𝑊𝑝𝑌𝑝𝑋) ↔ (𝑝 𝑊𝑝𝑋𝑝𝑌))
1110rexbii 3083 . . 3 (∃𝑝𝐴 (𝑝 𝑊𝑝𝑌𝑝𝑋) ↔ ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
129, 11sylib 217 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑌𝐴𝑌 𝑊)) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
134, 12lhpexle1lem 39607 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 (𝑝 𝑊𝑝𝑋𝑝𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wrex 3059   class class class wbr 5149  cfv 6549  lecple 17243  Atomscatm 38862  HLchlt 38949  LHypclh 39584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-oposet 38775  df-ol 38777  df-oml 38778  df-covers 38865  df-ats 38866  df-atl 38897  df-cvlat 38921  df-hlat 38950  df-lhyp 39588
This theorem is referenced by:  lhpexle3lem  39611  lhpexle3  39612  cdlemj3  40423
  Copyright terms: Public domain W3C validator