Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpexnle | Structured version Visualization version GIF version |
Description: There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.) |
Ref | Expression |
---|---|
lhp2a.l | ⊢ ≤ = (le‘𝐾) |
lhp2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhp2a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpexnle | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
3 | lhp2a.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhp1cvr 37940 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
5 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ HL) | |
6 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
7 | 6, 3 | lhpbase 37939 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ (Base‘𝐾)) |
9 | hlop 37303 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | 6, 1 | op1cl 37126 | . . . . . 6 ⊢ (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾)) |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾)) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1.‘𝐾) ∈ (Base‘𝐾)) |
13 | lhp2a.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
14 | eqid 2738 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
15 | lhp2a.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
16 | 6, 13, 14, 2, 15 | cvrval3 37354 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)))) |
17 | 5, 8, 12, 16 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)))) |
18 | 4, 17 | mpbid 231 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾))) |
19 | simpl 482 | . . 3 ⊢ ((¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)) → ¬ 𝑝 ≤ 𝑊) | |
20 | 19 | reximi 3174 | . 2 ⊢ (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) |
21 | 18, 20 | syl 17 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 1.cp1 18057 OPcops 37113 ⋖ ccvr 37203 Atomscatm 37204 HLchlt 37291 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lhyp 37929 |
This theorem is referenced by: trlcnv 38106 trlator0 38112 trlid0 38117 trlnidatb 38118 cdlemf2 38503 cdlemg1cex 38529 trlco 38668 cdlemg44 38674 |
Copyright terms: Public domain | W3C validator |