Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpexnle Structured version   Visualization version   GIF version

Theorem lhpexnle 39367
Description: There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.)
Hypotheses
Ref Expression
lhp2a.l = (le‘𝐾)
lhp2a.a 𝐴 = (Atoms‘𝐾)
lhp2a.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpexnle ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
Distinct variable groups:   𝐴,𝑝   𝐻,𝑝   𝐾,𝑝   ,𝑝   𝑊,𝑝

Proof of Theorem lhpexnle
StepHypRef Expression
1 eqid 2724 . . . 4 (1.‘𝐾) = (1.‘𝐾)
2 eqid 2724 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 lhp2a.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhp1cvr 39360 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
5 simpl 482 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐾 ∈ HL)
6 eqid 2724 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
76, 3lhpbase 39359 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
87adantl 481 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊 ∈ (Base‘𝐾))
9 hlop 38722 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
106, 1op1cl 38545 . . . . . 6 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
119, 10syl 17 . . . . 5 (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾))
1211adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1.‘𝐾) ∈ (Base‘𝐾))
13 lhp2a.l . . . . 5 = (le‘𝐾)
14 eqid 2724 . . . . 5 (join‘𝐾) = (join‘𝐾)
15 lhp2a.a . . . . 5 𝐴 = (Atoms‘𝐾)
166, 13, 14, 2, 15cvrval3 38774 . . . 4 ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ∃𝑝𝐴𝑝 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾))))
175, 8, 12, 16syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ∃𝑝𝐴𝑝 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾))))
184, 17mpbid 231 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)))
19 simpl 482 . . 3 ((¬ 𝑝 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)) → ¬ 𝑝 𝑊)
2019reximi 3076 . 2 (∃𝑝𝐴𝑝 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
2118, 20syl 17 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wrex 3062   class class class wbr 5138  cfv 6533  (class class class)co 7401  Basecbs 17143  lecple 17203  joincjn 18266  1.cp1 18379  OPcops 38532  ccvr 38622  Atomscatm 38623  HLchlt 38710  LHypclh 39345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-lhyp 39349
This theorem is referenced by:  trlcnv  39526  trlator0  39532  trlid0  39537  trlnidatb  39538  cdlemf2  39923  cdlemg1cex  39949  trlco  40088  cdlemg44  40094
  Copyright terms: Public domain W3C validator