Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpexnle | Structured version Visualization version GIF version |
Description: There exists an atom not under a co-atom. (Contributed by NM, 12-Apr-2013.) |
Ref | Expression |
---|---|
lhp2a.l | ⊢ ≤ = (le‘𝐾) |
lhp2a.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhp2a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpexnle | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
3 | lhp2a.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhp1cvr 38013 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
5 | simpl 483 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ HL) | |
6 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
7 | 6, 3 | lhpbase 38012 | . . . . 5 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
8 | 7 | adantl 482 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ (Base‘𝐾)) |
9 | hlop 37376 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | 6, 1 | op1cl 37199 | . . . . . 6 ⊢ (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾)) |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ (𝐾 ∈ HL → (1.‘𝐾) ∈ (Base‘𝐾)) |
12 | 11 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1.‘𝐾) ∈ (Base‘𝐾)) |
13 | lhp2a.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
14 | eqid 2738 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
15 | lhp2a.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
16 | 6, 13, 14, 2, 15 | cvrval3 37427 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)))) |
17 | 5, 8, 12, 16 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊( ⋖ ‘𝐾)(1.‘𝐾) ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)))) |
18 | 4, 17 | mpbid 231 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾))) |
19 | simpl 483 | . . 3 ⊢ ((¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)) → ¬ 𝑝 ≤ 𝑊) | |
20 | 19 | reximi 3178 | . 2 ⊢ (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑊 ∧ (𝑊(join‘𝐾)𝑝) = (1.‘𝐾)) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) |
21 | 18, 20 | syl 17 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ 𝐴 ¬ 𝑝 ≤ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 1.cp1 18142 OPcops 37186 ⋖ ccvr 37276 Atomscatm 37277 HLchlt 37364 LHypclh 37998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-lhyp 38002 |
This theorem is referenced by: trlcnv 38179 trlator0 38185 trlid0 38190 trlnidatb 38191 cdlemf2 38576 cdlemg1cex 38602 trlco 38741 cdlemg44 38747 |
Copyright terms: Public domain | W3C validator |