MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeulem Structured version   Visualization version   GIF version

Theorem oeeulem 8227
Description: Lemma for oeeu 8229. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
Assertion
Ref Expression
oeeulem ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oeeulem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oeeu.1 . . 3 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
2 eldifi 4103 . . . . . . . 8 (𝐵 ∈ (On ∖ 1o) → 𝐵 ∈ On)
32adantl 484 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ On)
4 suceloni 7528 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
53, 4syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝐵 ∈ On)
6 oeworde 8219 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ suc 𝐵 ∈ On) → suc 𝐵 ⊆ (𝐴o suc 𝐵))
75, 6syldan 593 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝐵 ⊆ (𝐴o suc 𝐵))
8 sucidg 6269 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
93, 8syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ suc 𝐵)
107, 9sseldd 3968 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝐵))
11 oveq2 7164 . . . . . . . 8 (𝑥 = suc 𝐵 → (𝐴o 𝑥) = (𝐴o suc 𝐵))
1211eleq2d 2898 . . . . . . 7 (𝑥 = suc 𝐵 → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o suc 𝐵)))
1312rspcev 3623 . . . . . 6 ((suc 𝐵 ∈ On ∧ 𝐵 ∈ (𝐴o suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
145, 10, 13syl2anc 586 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
15 onintrab2 7517 . . . . 5 (∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥) ↔ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
1614, 15sylib 220 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
17 onuni 7508 . . . 4 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
1816, 17syl 17 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
191, 18eqeltrid 2917 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ On)
20 sucidg 6269 . . . . . . 7 (𝑋 ∈ On → 𝑋 ∈ suc 𝑋)
2119, 20syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ suc 𝑋)
22 dif1o 8125 . . . . . . . . . . . . 13 (𝐵 ∈ (On ∖ 1o) ↔ (𝐵 ∈ On ∧ 𝐵 ≠ ∅))
2322simprbi 499 . . . . . . . . . . . 12 (𝐵 ∈ (On ∖ 1o) → 𝐵 ≠ ∅)
2423adantl 484 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ≠ ∅)
25 ssrab2 4056 . . . . . . . . . . . . . . 15 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ⊆ On
26 rabn0 4339 . . . . . . . . . . . . . . . 16 ({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
2714, 26sylibr 236 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅)
28 onint 7510 . . . . . . . . . . . . . . 15 (({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ⊆ On ∧ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
2925, 27, 28sylancr 589 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
30 eleq1 2900 . . . . . . . . . . . . . 14 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
3129, 30syl5ibcom 247 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
32 oveq2 7164 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
3332eleq2d 2898 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o ∅)))
3433elrab 3680 . . . . . . . . . . . . . . 15 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (∅ ∈ On ∧ 𝐵 ∈ (𝐴o ∅)))
3534simprbi 499 . . . . . . . . . . . . . 14 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o ∅))
36 eldifi 4103 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
3736adantr 483 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐴 ∈ On)
38 oe0 8147 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (𝐴o ∅) = 1o)
3937, 38syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o ∅) = 1o)
4039eleq2d 2898 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ∈ (𝐴o ∅) ↔ 𝐵 ∈ 1o))
41 el1o 8124 . . . . . . . . . . . . . . 15 (𝐵 ∈ 1o𝐵 = ∅)
4240, 41syl6bb 289 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ∈ (𝐴o ∅) ↔ 𝐵 = ∅))
4335, 42syl5ib 246 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 = ∅))
4431, 43syld 47 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → 𝐵 = ∅))
4544necon3ad 3029 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ≠ ∅ → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅))
4624, 45mpd 15 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅)
47 limuni 6251 . . . . . . . . . . . . . . . . 17 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
4847, 1syl6eqr 2874 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋)
4948adantl 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋)
5029adantr 483 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
5149, 50eqeltrrd 2914 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
52 oveq2 7164 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝐴o 𝑦) = (𝐴o 𝑋))
5352eleq2d 2898 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝐵 ∈ (𝐴o 𝑦) ↔ 𝐵 ∈ (𝐴o 𝑋)))
54 oveq2 7164 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
5554eleq2d 2898 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o 𝑦)))
5655cbvrabv 3491 . . . . . . . . . . . . . . . 16 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)}
5753, 56elrab2 3683 . . . . . . . . . . . . . . 15 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (𝑋 ∈ On ∧ 𝐵 ∈ (𝐴o 𝑋)))
5857simprbi 499 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o 𝑋))
5951, 58syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐵 ∈ (𝐴o 𝑋))
6036ad2antrr 724 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐴 ∈ On)
61 limeq 6203 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋 → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ Lim 𝑋))
6248, 61syl 17 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ Lim 𝑋))
6362ibi 269 . . . . . . . . . . . . . . 15 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → Lim 𝑋)
6419, 63anim12i 614 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝑋 ∈ On ∧ Lim 𝑋))
65 dif20el 8130 . . . . . . . . . . . . . . 15 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
6665ad2antrr 724 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ∅ ∈ 𝐴)
67 oelim 8159 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ (𝑋 ∈ On ∧ Lim 𝑋)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑋) = 𝑦𝑋 (𝐴o 𝑦))
6860, 64, 66, 67syl21anc 835 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝐴o 𝑋) = 𝑦𝑋 (𝐴o 𝑦))
6959, 68eleqtrd 2915 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐵 𝑦𝑋 (𝐴o 𝑦))
70 eliun 4923 . . . . . . . . . . . 12 (𝐵 𝑦𝑋 (𝐴o 𝑦) ↔ ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
7169, 70sylib 220 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
7219adantr 483 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ∈ On)
73 onss 7505 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → 𝑋 ⊆ On)
7472, 73syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ⊆ On)
7574sselda 3967 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → 𝑦 ∈ On)
7649eleq2d 2898 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ 𝑦𝑋))
7776biimpar 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → 𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
7855onnminsb 7519 . . . . . . . . . . . . 13 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ¬ 𝐵 ∈ (𝐴o 𝑦)))
7975, 77, 78sylc 65 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → ¬ 𝐵 ∈ (𝐴o 𝑦))
8079nrexdv 3270 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ¬ ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
8171, 80pm2.65da 815 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
82 ioran 980 . . . . . . . . . 10 (¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ↔ (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∧ ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
8346, 81, 82sylanbrc 585 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
84 eloni 6201 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
85 unizlim 6307 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})))
8616, 84, 853syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})))
8783, 86mtbird 327 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
88 orduniorsuc 7545 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
8916, 84, 883syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
9089ord 860 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
9187, 90mpd 15 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
92 suceq 6256 . . . . . . . 8 (𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
931, 92ax-mp 5 . . . . . . 7 suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
9491, 93syl6reqr 2875 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
9521, 94eleqtrd 2915 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
9656inteqi 4880 . . . . 5 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)}
9795, 96eleqtrdi 2923 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)})
9853onnminsb 7519 . . . 4 (𝑋 ∈ On → (𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)} → ¬ 𝐵 ∈ (𝐴o 𝑋)))
9919, 97, 98sylc 65 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ 𝐵 ∈ (𝐴o 𝑋))
100 oecl 8162 . . . . 5 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
10137, 19, 100syl2anc 586 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ∈ On)
102 ontri1 6225 . . . 4 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On) → ((𝐴o 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝑋)))
103101, 3, 102syl2anc 586 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐴o 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝑋)))
10499, 103mpbird 259 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ⊆ 𝐵)
10594, 29eqeltrd 2913 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
106 oveq2 7164 . . . . . 6 (𝑦 = suc 𝑋 → (𝐴o 𝑦) = (𝐴o suc 𝑋))
107106eleq2d 2898 . . . . 5 (𝑦 = suc 𝑋 → (𝐵 ∈ (𝐴o 𝑦) ↔ 𝐵 ∈ (𝐴o suc 𝑋)))
108107, 56elrab2 3683 . . . 4 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (suc 𝑋 ∈ On ∧ 𝐵 ∈ (𝐴o suc 𝑋)))
109108simprbi 499 . . 3 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o suc 𝑋))
110105, 109syl 17 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝑋))
11119, 104, 1103jca 1124 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  {crab 3142  cdif 3933  wss 3936  c0 4291   cuni 4838   cint 4876   ciun 4919  Ord word 6190  Oncon0 6191  Lim wlim 6192  suc csuc 6193  (class class class)co 7156  1oc1o 8095  2oc2o 8096  o coe 8101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-oexp 8108
This theorem is referenced by:  oeeui  8228  oeeu  8229
  Copyright terms: Public domain W3C validator