MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeulem Structured version   Visualization version   GIF version

Theorem oeeulem 8621
Description: Lemma for oeeu 8623. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
Assertion
Ref Expression
oeeulem ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oeeulem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oeeu.1 . . 3 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
2 eldifi 4111 . . . . . . . 8 (𝐵 ∈ (On ∖ 1o) → 𝐵 ∈ On)
32adantl 481 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ On)
4 onsuc 7813 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
53, 4syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝐵 ∈ On)
6 oeworde 8613 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ suc 𝐵 ∈ On) → suc 𝐵 ⊆ (𝐴o suc 𝐵))
75, 6syldan 591 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝐵 ⊆ (𝐴o suc 𝐵))
8 sucidg 6445 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
93, 8syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ suc 𝐵)
107, 9sseldd 3964 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝐵))
11 oveq2 7421 . . . . . . . 8 (𝑥 = suc 𝐵 → (𝐴o 𝑥) = (𝐴o suc 𝐵))
1211eleq2d 2819 . . . . . . 7 (𝑥 = suc 𝐵 → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o suc 𝐵)))
1312rspcev 3605 . . . . . 6 ((suc 𝐵 ∈ On ∧ 𝐵 ∈ (𝐴o suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
145, 10, 13syl2anc 584 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
15 onintrab2 7799 . . . . 5 (∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥) ↔ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
1614, 15sylib 218 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
17 onuni 7790 . . . 4 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
1816, 17syl 17 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
191, 18eqeltrid 2837 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ On)
20 sucidg 6445 . . . . . . 7 (𝑋 ∈ On → 𝑋 ∈ suc 𝑋)
2119, 20syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ suc 𝑋)
22 suceq 6430 . . . . . . . 8 (𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
231, 22ax-mp 5 . . . . . . 7 suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
24 dif1o 8520 . . . . . . . . . . . . 13 (𝐵 ∈ (On ∖ 1o) ↔ (𝐵 ∈ On ∧ 𝐵 ≠ ∅))
2524simprbi 496 . . . . . . . . . . . 12 (𝐵 ∈ (On ∖ 1o) → 𝐵 ≠ ∅)
2625adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ≠ ∅)
27 ssrab2 4060 . . . . . . . . . . . . . . 15 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ⊆ On
28 rabn0 4369 . . . . . . . . . . . . . . . 16 ({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
2914, 28sylibr 234 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅)
30 onint 7792 . . . . . . . . . . . . . . 15 (({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ⊆ On ∧ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
3127, 29, 30sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
32 eleq1 2821 . . . . . . . . . . . . . 14 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
3331, 32syl5ibcom 245 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
34 oveq2 7421 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
3534eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o ∅)))
3635elrab 3675 . . . . . . . . . . . . . . 15 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (∅ ∈ On ∧ 𝐵 ∈ (𝐴o ∅)))
3736simprbi 496 . . . . . . . . . . . . . 14 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o ∅))
38 eldifi 4111 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
3938adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐴 ∈ On)
40 oe0 8542 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (𝐴o ∅) = 1o)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o ∅) = 1o)
4241eleq2d 2819 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ∈ (𝐴o ∅) ↔ 𝐵 ∈ 1o))
43 el1o 8515 . . . . . . . . . . . . . . 15 (𝐵 ∈ 1o𝐵 = ∅)
4442, 43bitrdi 287 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ∈ (𝐴o ∅) ↔ 𝐵 = ∅))
4537, 44imbitrid 244 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 = ∅))
4633, 45syld 47 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → 𝐵 = ∅))
4746necon3ad 2944 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ≠ ∅ → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅))
4826, 47mpd 15 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅)
49 limuni 6425 . . . . . . . . . . . . . . . . 17 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
5049, 1eqtr4di 2787 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋)
5150adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋)
5231adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
5351, 52eqeltrrd 2834 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
54 oveq2 7421 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝐴o 𝑦) = (𝐴o 𝑋))
5554eleq2d 2819 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝐵 ∈ (𝐴o 𝑦) ↔ 𝐵 ∈ (𝐴o 𝑋)))
56 oveq2 7421 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
5756eleq2d 2819 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o 𝑦)))
5857cbvrabv 3430 . . . . . . . . . . . . . . . 16 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)}
5955, 58elrab2 3678 . . . . . . . . . . . . . . 15 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (𝑋 ∈ On ∧ 𝐵 ∈ (𝐴o 𝑋)))
6059simprbi 496 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o 𝑋))
6153, 60syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐵 ∈ (𝐴o 𝑋))
6238ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐴 ∈ On)
63 limeq 6375 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋 → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ Lim 𝑋))
6450, 63syl 17 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ Lim 𝑋))
6564ibi 267 . . . . . . . . . . . . . . 15 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → Lim 𝑋)
6619, 65anim12i 613 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝑋 ∈ On ∧ Lim 𝑋))
67 dif20el 8525 . . . . . . . . . . . . . . 15 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
6867ad2antrr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ∅ ∈ 𝐴)
69 oelim 8554 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ (𝑋 ∈ On ∧ Lim 𝑋)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑋) = 𝑦𝑋 (𝐴o 𝑦))
7062, 66, 68, 69syl21anc 837 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝐴o 𝑋) = 𝑦𝑋 (𝐴o 𝑦))
7161, 70eleqtrd 2835 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐵 𝑦𝑋 (𝐴o 𝑦))
72 eliun 4975 . . . . . . . . . . . 12 (𝐵 𝑦𝑋 (𝐴o 𝑦) ↔ ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
7371, 72sylib 218 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
7419adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ∈ On)
75 onss 7787 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → 𝑋 ⊆ On)
7674, 75syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ⊆ On)
7776sselda 3963 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → 𝑦 ∈ On)
7851eleq2d 2819 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ 𝑦𝑋))
7978biimpar 477 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → 𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
8057onnminsb 7801 . . . . . . . . . . . . 13 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ¬ 𝐵 ∈ (𝐴o 𝑦)))
8177, 79, 80sylc 65 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → ¬ 𝐵 ∈ (𝐴o 𝑦))
8281nrexdv 3136 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ¬ ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
8373, 82pm2.65da 816 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
84 ioran 985 . . . . . . . . . 10 (¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ↔ (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∧ ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
8548, 83, 84sylanbrc 583 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
86 eloni 6373 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
87 unizlim 6487 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})))
8816, 86, 873syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})))
8985, 88mtbird 325 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
90 orduniorsuc 7832 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
9116, 86, 903syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
9291ord 864 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
9389, 92mpd 15 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
9423, 93eqtr4id 2788 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
9521, 94eleqtrd 2835 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
9658inteqi 4930 . . . . 5 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)}
9795, 96eleqtrdi 2843 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)})
9855onnminsb 7801 . . . 4 (𝑋 ∈ On → (𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)} → ¬ 𝐵 ∈ (𝐴o 𝑋)))
9919, 97, 98sylc 65 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ 𝐵 ∈ (𝐴o 𝑋))
100 oecl 8557 . . . . 5 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
10139, 19, 100syl2anc 584 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ∈ On)
102 ontri1 6397 . . . 4 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On) → ((𝐴o 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝑋)))
103101, 3, 102syl2anc 584 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐴o 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝑋)))
10499, 103mpbird 257 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ⊆ 𝐵)
10594, 31eqeltrd 2833 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
106 oveq2 7421 . . . . . 6 (𝑦 = suc 𝑋 → (𝐴o 𝑦) = (𝐴o suc 𝑋))
107106eleq2d 2819 . . . . 5 (𝑦 = suc 𝑋 → (𝐵 ∈ (𝐴o 𝑦) ↔ 𝐵 ∈ (𝐴o suc 𝑋)))
108107, 58elrab2 3678 . . . 4 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (suc 𝑋 ∈ On ∧ 𝐵 ∈ (𝐴o suc 𝑋)))
109108simprbi 496 . . 3 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o suc 𝑋))
110105, 109syl 17 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝑋))
11119, 104, 1103jca 1128 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {crab 3419  cdif 3928  wss 3931  c0 4313   cuni 4887   cint 4926   ciun 4971  Ord word 6362  Oncon0 6363  Lim wlim 6364  suc csuc 6365  (class class class)co 7413  1oc1o 8481  2oc2o 8482  o coe 8487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-oexp 8494
This theorem is referenced by:  oeeui  8622  oeeu  8623
  Copyright terms: Public domain W3C validator