MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeulem Structured version   Visualization version   GIF version

Theorem oeeulem 8394
Description: Lemma for oeeu 8396. (Contributed by Mario Carneiro, 28-Feb-2013.)
Hypothesis
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
Assertion
Ref Expression
oeeulem ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem oeeulem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oeeu.1 . . 3 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
2 eldifi 4057 . . . . . . . 8 (𝐵 ∈ (On ∖ 1o) → 𝐵 ∈ On)
32adantl 481 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ On)
4 suceloni 7635 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
53, 4syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝐵 ∈ On)
6 oeworde 8386 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ suc 𝐵 ∈ On) → suc 𝐵 ⊆ (𝐴o suc 𝐵))
75, 6syldan 590 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝐵 ⊆ (𝐴o suc 𝐵))
8 sucidg 6329 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ∈ suc 𝐵)
93, 8syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ suc 𝐵)
107, 9sseldd 3918 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝐵))
11 oveq2 7263 . . . . . . . 8 (𝑥 = suc 𝐵 → (𝐴o 𝑥) = (𝐴o suc 𝐵))
1211eleq2d 2824 . . . . . . 7 (𝑥 = suc 𝐵 → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o suc 𝐵)))
1312rspcev 3552 . . . . . 6 ((suc 𝐵 ∈ On ∧ 𝐵 ∈ (𝐴o suc 𝐵)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
145, 10, 13syl2anc 583 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
15 onintrab2 7624 . . . . 5 (∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥) ↔ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
1614, 15sylib 217 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
17 onuni 7615 . . . 4 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
1816, 17syl 17 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On)
191, 18eqeltrid 2843 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ On)
20 sucidg 6329 . . . . . . 7 (𝑋 ∈ On → 𝑋 ∈ suc 𝑋)
2119, 20syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ suc 𝑋)
22 suceq 6316 . . . . . . . 8 (𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
231, 22ax-mp 5 . . . . . . 7 suc 𝑋 = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
24 dif1o 8292 . . . . . . . . . . . . 13 (𝐵 ∈ (On ∖ 1o) ↔ (𝐵 ∈ On ∧ 𝐵 ≠ ∅))
2524simprbi 496 . . . . . . . . . . . 12 (𝐵 ∈ (On ∖ 1o) → 𝐵 ≠ ∅)
2625adantl 481 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ≠ ∅)
27 ssrab2 4009 . . . . . . . . . . . . . . 15 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ⊆ On
28 rabn0 4316 . . . . . . . . . . . . . . . 16 ({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅ ↔ ∃𝑥 ∈ On 𝐵 ∈ (𝐴o 𝑥))
2914, 28sylibr 233 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅)
30 onint 7617 . . . . . . . . . . . . . . 15 (({𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ⊆ On ∧ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ≠ ∅) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
3127, 29, 30sylancr 586 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
32 eleq1 2826 . . . . . . . . . . . . . 14 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
3331, 32syl5ibcom 244 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → ∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
34 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
3534eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝑥 = ∅ → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o ∅)))
3635elrab 3617 . . . . . . . . . . . . . . 15 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (∅ ∈ On ∧ 𝐵 ∈ (𝐴o ∅)))
3736simprbi 496 . . . . . . . . . . . . . 14 (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o ∅))
38 eldifi 4057 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
3938adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐴 ∈ On)
40 oe0 8314 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → (𝐴o ∅) = 1o)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o ∅) = 1o)
4241eleq2d 2824 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ∈ (𝐴o ∅) ↔ 𝐵 ∈ 1o))
43 el1o 8291 . . . . . . . . . . . . . . 15 (𝐵 ∈ 1o𝐵 = ∅)
4442, 43bitrdi 286 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ∈ (𝐴o ∅) ↔ 𝐵 = ∅))
4537, 44syl5ib 243 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (∅ ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 = ∅))
4633, 45syld 47 . . . . . . . . . . . 12 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ → 𝐵 = ∅))
4746necon3ad 2955 . . . . . . . . . . 11 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐵 ≠ ∅ → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅))
4826, 47mpd 15 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅)
49 limuni 6311 . . . . . . . . . . . . . . . . 17 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
5049, 1eqtr4di 2797 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋)
5150adantl 481 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋)
5231adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
5351, 52eqeltrrd 2840 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
54 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑋 → (𝐴o 𝑦) = (𝐴o 𝑋))
5554eleq2d 2824 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑋 → (𝐵 ∈ (𝐴o 𝑦) ↔ 𝐵 ∈ (𝐴o 𝑋)))
56 oveq2 7263 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
5756eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝐵 ∈ (𝐴o 𝑥) ↔ 𝐵 ∈ (𝐴o 𝑦)))
5857cbvrabv 3416 . . . . . . . . . . . . . . . 16 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)}
5955, 58elrab2 3620 . . . . . . . . . . . . . . 15 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (𝑋 ∈ On ∧ 𝐵 ∈ (𝐴o 𝑋)))
6059simprbi 496 . . . . . . . . . . . . . 14 (𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o 𝑋))
6153, 60syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐵 ∈ (𝐴o 𝑋))
6238ad2antrr 722 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐴 ∈ On)
63 limeq 6263 . . . . . . . . . . . . . . . . 17 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = 𝑋 → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ Lim 𝑋))
6450, 63syl 17 . . . . . . . . . . . . . . . 16 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ Lim 𝑋))
6564ibi 266 . . . . . . . . . . . . . . 15 (Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → Lim 𝑋)
6619, 65anim12i 612 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝑋 ∈ On ∧ Lim 𝑋))
67 dif20el 8297 . . . . . . . . . . . . . . 15 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
6867ad2antrr 722 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ∅ ∈ 𝐴)
69 oelim 8326 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ (𝑋 ∈ On ∧ Lim 𝑋)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑋) = 𝑦𝑋 (𝐴o 𝑦))
7062, 66, 68, 69syl21anc 834 . . . . . . . . . . . . 13 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝐴o 𝑋) = 𝑦𝑋 (𝐴o 𝑦))
7161, 70eleqtrd 2841 . . . . . . . . . . . 12 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝐵 𝑦𝑋 (𝐴o 𝑦))
72 eliun 4925 . . . . . . . . . . . 12 (𝐵 𝑦𝑋 (𝐴o 𝑦) ↔ ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
7371, 72sylib 217 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
7419adantr 480 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ∈ On)
75 onss 7611 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → 𝑋 ⊆ On)
7674, 75syl 17 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → 𝑋 ⊆ On)
7776sselda 3917 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → 𝑦 ∈ On)
7851eleq2d 2824 . . . . . . . . . . . . . 14 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ 𝑦𝑋))
7978biimpar 477 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → 𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
8057onnminsb 7626 . . . . . . . . . . . . 13 (𝑦 ∈ On → (𝑦 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ¬ 𝐵 ∈ (𝐴o 𝑦)))
8177, 79, 80sylc 65 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ∧ 𝑦𝑋) → ¬ 𝐵 ∈ (𝐴o 𝑦))
8281nrexdv 3197 . . . . . . . . . . 11 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) → ¬ ∃𝑦𝑋 𝐵 ∈ (𝐴o 𝑦))
8373, 82pm2.65da 813 . . . . . . . . . 10 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
84 ioran 980 . . . . . . . . . 10 (¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}) ↔ (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∧ ¬ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
8548, 83, 84sylanbrc 582 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
86 eloni 6261 . . . . . . . . . 10 ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∈ On → Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
87 unizlim 6368 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})))
8816, 86, 873syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = ∅ ∨ Lim {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})))
8985, 88mtbird 324 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
90 orduniorsuc 7652 . . . . . . . . . 10 (Ord {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
9116, 86, 903syl 18 . . . . . . . . 9 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ( {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ∨ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
9291ord 860 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (¬ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}))
9389, 92mpd 15 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = suc {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
9423, 93eqtr4id 2798 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
9521, 94eleqtrd 2841 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
9658inteqi 4880 . . . . 5 {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} = {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)}
9795, 96eleqtrdi 2849 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)})
9855onnminsb 7626 . . . 4 (𝑋 ∈ On → (𝑋 {𝑦 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑦)} → ¬ 𝐵 ∈ (𝐴o 𝑋)))
9919, 97, 98sylc 65 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ¬ 𝐵 ∈ (𝐴o 𝑋))
100 oecl 8329 . . . . 5 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
10139, 19, 100syl2anc 583 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ∈ On)
102 ontri1 6285 . . . 4 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On) → ((𝐴o 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝑋)))
103101, 3, 102syl2anc 583 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐴o 𝑋) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝑋)))
10499, 103mpbird 256 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ⊆ 𝐵)
10594, 31eqeltrd 2839 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)})
106 oveq2 7263 . . . . . 6 (𝑦 = suc 𝑋 → (𝐴o 𝑦) = (𝐴o suc 𝑋))
107106eleq2d 2824 . . . . 5 (𝑦 = suc 𝑋 → (𝐵 ∈ (𝐴o 𝑦) ↔ 𝐵 ∈ (𝐴o suc 𝑋)))
108107, 58elrab2 3620 . . . 4 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} ↔ (suc 𝑋 ∈ On ∧ 𝐵 ∈ (𝐴o suc 𝑋)))
109108simprbi 496 . . 3 (suc 𝑋 ∈ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)} → 𝐵 ∈ (𝐴o suc 𝑋))
110105, 109syl 17 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝑋))
11119, 104, 1103jca 1126 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  cdif 3880  wss 3883  c0 4253   cuni 4836   cint 4876   ciun 4921  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  (class class class)co 7255  1oc1o 8260  2oc2o 8261  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by:  oeeui  8395  oeeu  8396
  Copyright terms: Public domain W3C validator