MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1r Structured version   Visualization version   GIF version

Theorem om1r 8560
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om1r (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)

Proof of Theorem om1r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7418 . . 3 (𝑥 = ∅ → (1o ·o 𝑥) = (1o ·o ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2752 . 2 (𝑥 = ∅ → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o ∅) = ∅))
4 oveq2 7418 . . 3 (𝑥 = 𝑦 → (1o ·o 𝑥) = (1o ·o 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2752 . 2 (𝑥 = 𝑦 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o 𝑦) = 𝑦))
7 oveq2 7418 . . 3 (𝑥 = suc 𝑦 → (1o ·o 𝑥) = (1o ·o suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2752 . 2 (𝑥 = suc 𝑦 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o suc 𝑦) = suc 𝑦))
10 oveq2 7418 . . 3 (𝑥 = 𝐴 → (1o ·o 𝑥) = (1o ·o 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2752 . 2 (𝑥 = 𝐴 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o 𝐴) = 𝐴))
13 1on 8497 . . 3 1o ∈ On
14 om0 8534 . . 3 (1o ∈ On → (1o ·o ∅) = ∅)
1513, 14ax-mp 5 . 2 (1o ·o ∅) = ∅
16 omsuc 8543 . . . . . 6 ((1o ∈ On ∧ 𝑦 ∈ On) → (1o ·o suc 𝑦) = ((1o ·o 𝑦) +o 1o))
1713, 16mpan 690 . . . . 5 (𝑦 ∈ On → (1o ·o suc 𝑦) = ((1o ·o 𝑦) +o 1o))
18 oveq1 7417 . . . . 5 ((1o ·o 𝑦) = 𝑦 → ((1o ·o 𝑦) +o 1o) = (𝑦 +o 1o))
1917, 18sylan9eq 2791 . . . 4 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (1o ·o suc 𝑦) = (𝑦 +o 1o))
20 oa1suc 8548 . . . . 5 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
2120adantr 480 . . . 4 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (𝑦 +o 1o) = suc 𝑦)
2219, 21eqtrd 2771 . . 3 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (1o ·o suc 𝑦) = suc 𝑦)
2322ex 412 . 2 (𝑦 ∈ On → ((1o ·o 𝑦) = 𝑦 → (1o ·o suc 𝑦) = suc 𝑦))
24 iuneq2 4992 . . . 4 (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 𝑦𝑥 (1o ·o 𝑦) = 𝑦𝑥 𝑦)
25 uniiun 5039 . . . 4 𝑥 = 𝑦𝑥 𝑦
2624, 25eqtr4di 2789 . . 3 (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 𝑦𝑥 (1o ·o 𝑦) = 𝑥)
27 vex 3468 . . . . 5 𝑥 ∈ V
28 omlim 8550 . . . . . 6 ((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
2913, 28mpan 690 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
3027, 29mpan 690 . . . 4 (Lim 𝑥 → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
31 limuni 6419 . . . 4 (Lim 𝑥𝑥 = 𝑥)
3230, 31eqeq12d 2752 . . 3 (Lim 𝑥 → ((1o ·o 𝑥) = 𝑥 𝑦𝑥 (1o ·o 𝑦) = 𝑥))
3326, 32imbitrrid 246 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 → (1o ·o 𝑥) = 𝑥))
343, 6, 9, 12, 15, 23, 33tfinds 7860 1 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  c0 4313   cuni 4888   ciun 4972  Oncon0 6357  Lim wlim 6358  suc csuc 6359  (class class class)co 7410  1oc1o 8478   +o coa 8482   ·o comu 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490
This theorem is referenced by:  oe1  8561  omword2  8591  om1om1r  43275  omabs2  43323  omcl2  43324
  Copyright terms: Public domain W3C validator