MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1r Structured version   Visualization version   GIF version

Theorem om1r 8374
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om1r (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)

Proof of Theorem om1r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . 3 (𝑥 = ∅ → (1o ·o 𝑥) = (1o ·o ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2754 . 2 (𝑥 = ∅ → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o ∅) = ∅))
4 oveq2 7283 . . 3 (𝑥 = 𝑦 → (1o ·o 𝑥) = (1o ·o 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2754 . 2 (𝑥 = 𝑦 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o 𝑦) = 𝑦))
7 oveq2 7283 . . 3 (𝑥 = suc 𝑦 → (1o ·o 𝑥) = (1o ·o suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2754 . 2 (𝑥 = suc 𝑦 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o suc 𝑦) = suc 𝑦))
10 oveq2 7283 . . 3 (𝑥 = 𝐴 → (1o ·o 𝑥) = (1o ·o 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2754 . 2 (𝑥 = 𝐴 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o 𝐴) = 𝐴))
13 1on 8309 . . 3 1o ∈ On
14 om0 8347 . . 3 (1o ∈ On → (1o ·o ∅) = ∅)
1513, 14ax-mp 5 . 2 (1o ·o ∅) = ∅
16 omsuc 8356 . . . . . 6 ((1o ∈ On ∧ 𝑦 ∈ On) → (1o ·o suc 𝑦) = ((1o ·o 𝑦) +o 1o))
1713, 16mpan 687 . . . . 5 (𝑦 ∈ On → (1o ·o suc 𝑦) = ((1o ·o 𝑦) +o 1o))
18 oveq1 7282 . . . . 5 ((1o ·o 𝑦) = 𝑦 → ((1o ·o 𝑦) +o 1o) = (𝑦 +o 1o))
1917, 18sylan9eq 2798 . . . 4 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (1o ·o suc 𝑦) = (𝑦 +o 1o))
20 oa1suc 8361 . . . . 5 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
2120adantr 481 . . . 4 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (𝑦 +o 1o) = suc 𝑦)
2219, 21eqtrd 2778 . . 3 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (1o ·o suc 𝑦) = suc 𝑦)
2322ex 413 . 2 (𝑦 ∈ On → ((1o ·o 𝑦) = 𝑦 → (1o ·o suc 𝑦) = suc 𝑦))
24 iuneq2 4943 . . . 4 (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 𝑦𝑥 (1o ·o 𝑦) = 𝑦𝑥 𝑦)
25 uniiun 4988 . . . 4 𝑥 = 𝑦𝑥 𝑦
2624, 25eqtr4di 2796 . . 3 (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 𝑦𝑥 (1o ·o 𝑦) = 𝑥)
27 vex 3436 . . . . 5 𝑥 ∈ V
28 omlim 8363 . . . . . 6 ((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
2913, 28mpan 687 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
3027, 29mpan 687 . . . 4 (Lim 𝑥 → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
31 limuni 6326 . . . 4 (Lim 𝑥𝑥 = 𝑥)
3230, 31eqeq12d 2754 . . 3 (Lim 𝑥 → ((1o ·o 𝑥) = 𝑥 𝑦𝑥 (1o ·o 𝑦) = 𝑥))
3326, 32syl5ibr 245 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 → (1o ·o 𝑥) = 𝑥))
343, 6, 9, 12, 15, 23, 33tfinds 7706 1 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  c0 4256   cuni 4839   ciun 4924  Oncon0 6266  Lim wlim 6267  suc csuc 6268  (class class class)co 7275  1oc1o 8290   +o coa 8294   ·o comu 8295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302
This theorem is referenced by:  oe1  8375  omword2  8405
  Copyright terms: Public domain W3C validator