MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1r Structured version   Visualization version   GIF version

Theorem om1r 8599
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om1r (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)

Proof of Theorem om1r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . 3 (𝑥 = ∅ → (1o ·o 𝑥) = (1o ·o ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2756 . 2 (𝑥 = ∅ → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o ∅) = ∅))
4 oveq2 7456 . . 3 (𝑥 = 𝑦 → (1o ·o 𝑥) = (1o ·o 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2756 . 2 (𝑥 = 𝑦 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o 𝑦) = 𝑦))
7 oveq2 7456 . . 3 (𝑥 = suc 𝑦 → (1o ·o 𝑥) = (1o ·o suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2756 . 2 (𝑥 = suc 𝑦 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o suc 𝑦) = suc 𝑦))
10 oveq2 7456 . . 3 (𝑥 = 𝐴 → (1o ·o 𝑥) = (1o ·o 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2756 . 2 (𝑥 = 𝐴 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o 𝐴) = 𝐴))
13 1on 8534 . . 3 1o ∈ On
14 om0 8573 . . 3 (1o ∈ On → (1o ·o ∅) = ∅)
1513, 14ax-mp 5 . 2 (1o ·o ∅) = ∅
16 omsuc 8582 . . . . . 6 ((1o ∈ On ∧ 𝑦 ∈ On) → (1o ·o suc 𝑦) = ((1o ·o 𝑦) +o 1o))
1713, 16mpan 689 . . . . 5 (𝑦 ∈ On → (1o ·o suc 𝑦) = ((1o ·o 𝑦) +o 1o))
18 oveq1 7455 . . . . 5 ((1o ·o 𝑦) = 𝑦 → ((1o ·o 𝑦) +o 1o) = (𝑦 +o 1o))
1917, 18sylan9eq 2800 . . . 4 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (1o ·o suc 𝑦) = (𝑦 +o 1o))
20 oa1suc 8587 . . . . 5 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
2120adantr 480 . . . 4 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (𝑦 +o 1o) = suc 𝑦)
2219, 21eqtrd 2780 . . 3 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (1o ·o suc 𝑦) = suc 𝑦)
2322ex 412 . 2 (𝑦 ∈ On → ((1o ·o 𝑦) = 𝑦 → (1o ·o suc 𝑦) = suc 𝑦))
24 iuneq2 5034 . . . 4 (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 𝑦𝑥 (1o ·o 𝑦) = 𝑦𝑥 𝑦)
25 uniiun 5081 . . . 4 𝑥 = 𝑦𝑥 𝑦
2624, 25eqtr4di 2798 . . 3 (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 𝑦𝑥 (1o ·o 𝑦) = 𝑥)
27 vex 3492 . . . . 5 𝑥 ∈ V
28 omlim 8589 . . . . . 6 ((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
2913, 28mpan 689 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
3027, 29mpan 689 . . . 4 (Lim 𝑥 → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
31 limuni 6456 . . . 4 (Lim 𝑥𝑥 = 𝑥)
3230, 31eqeq12d 2756 . . 3 (Lim 𝑥 → ((1o ·o 𝑥) = 𝑥 𝑦𝑥 (1o ·o 𝑦) = 𝑥))
3326, 32imbitrrid 246 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 → (1o ·o 𝑥) = 𝑥))
343, 6, 9, 12, 15, 23, 33tfinds 7897 1 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  c0 4352   cuni 4931   ciun 5015  Oncon0 6395  Lim wlim 6396  suc csuc 6397  (class class class)co 7448  1oc1o 8515   +o coa 8519   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527
This theorem is referenced by:  oe1  8600  omword2  8630  om1om1r  43246  omabs2  43294  omcl2  43295
  Copyright terms: Public domain W3C validator