MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om1r Structured version   Visualization version   GIF version

Theorem om1r 8564
Description: Ordinal multiplication with 1. Proposition 8.18(2) of [TakeutiZaring] p. 63. Lemma 2.15 of [Schloeder] p. 5. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
om1r (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)

Proof of Theorem om1r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7427 . . 3 (𝑥 = ∅ → (1o ·o 𝑥) = (1o ·o ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2741 . 2 (𝑥 = ∅ → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o ∅) = ∅))
4 oveq2 7427 . . 3 (𝑥 = 𝑦 → (1o ·o 𝑥) = (1o ·o 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2741 . 2 (𝑥 = 𝑦 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o 𝑦) = 𝑦))
7 oveq2 7427 . . 3 (𝑥 = suc 𝑦 → (1o ·o 𝑥) = (1o ·o suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2741 . 2 (𝑥 = suc 𝑦 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o suc 𝑦) = suc 𝑦))
10 oveq2 7427 . . 3 (𝑥 = 𝐴 → (1o ·o 𝑥) = (1o ·o 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2741 . 2 (𝑥 = 𝐴 → ((1o ·o 𝑥) = 𝑥 ↔ (1o ·o 𝐴) = 𝐴))
13 1on 8499 . . 3 1o ∈ On
14 om0 8538 . . 3 (1o ∈ On → (1o ·o ∅) = ∅)
1513, 14ax-mp 5 . 2 (1o ·o ∅) = ∅
16 omsuc 8547 . . . . . 6 ((1o ∈ On ∧ 𝑦 ∈ On) → (1o ·o suc 𝑦) = ((1o ·o 𝑦) +o 1o))
1713, 16mpan 688 . . . . 5 (𝑦 ∈ On → (1o ·o suc 𝑦) = ((1o ·o 𝑦) +o 1o))
18 oveq1 7426 . . . . 5 ((1o ·o 𝑦) = 𝑦 → ((1o ·o 𝑦) +o 1o) = (𝑦 +o 1o))
1917, 18sylan9eq 2785 . . . 4 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (1o ·o suc 𝑦) = (𝑦 +o 1o))
20 oa1suc 8552 . . . . 5 (𝑦 ∈ On → (𝑦 +o 1o) = suc 𝑦)
2120adantr 479 . . . 4 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (𝑦 +o 1o) = suc 𝑦)
2219, 21eqtrd 2765 . . 3 ((𝑦 ∈ On ∧ (1o ·o 𝑦) = 𝑦) → (1o ·o suc 𝑦) = suc 𝑦)
2322ex 411 . 2 (𝑦 ∈ On → ((1o ·o 𝑦) = 𝑦 → (1o ·o suc 𝑦) = suc 𝑦))
24 iuneq2 5016 . . . 4 (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 𝑦𝑥 (1o ·o 𝑦) = 𝑦𝑥 𝑦)
25 uniiun 5062 . . . 4 𝑥 = 𝑦𝑥 𝑦
2624, 25eqtr4di 2783 . . 3 (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 𝑦𝑥 (1o ·o 𝑦) = 𝑥)
27 vex 3465 . . . . 5 𝑥 ∈ V
28 omlim 8554 . . . . . 6 ((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
2913, 28mpan 688 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
3027, 29mpan 688 . . . 4 (Lim 𝑥 → (1o ·o 𝑥) = 𝑦𝑥 (1o ·o 𝑦))
31 limuni 6432 . . . 4 (Lim 𝑥𝑥 = 𝑥)
3230, 31eqeq12d 2741 . . 3 (Lim 𝑥 → ((1o ·o 𝑥) = 𝑥 𝑦𝑥 (1o ·o 𝑦) = 𝑥))
3326, 32imbitrrid 245 . 2 (Lim 𝑥 → (∀𝑦𝑥 (1o ·o 𝑦) = 𝑦 → (1o ·o 𝑥) = 𝑥))
343, 6, 9, 12, 15, 23, 33tfinds 7865 1 (𝐴 ∈ On → (1o ·o 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  c0 4322   cuni 4909   ciun 4997  Oncon0 6371  Lim wlim 6372  suc csuc 6373  (class class class)co 7419  1oc1o 8480   +o coa 8484   ·o comu 8485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-omul 8492
This theorem is referenced by:  oe1  8565  omword2  8595  om1om1r  42860  omabs2  42908  omcl2  42909
  Copyright terms: Public domain W3C validator