Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . 3
⊢ (𝑥 = ∅ → (1o
·o 𝑥) =
(1o ·o ∅)) |
2 | | id 22 |
. . 3
⊢ (𝑥 = ∅ → 𝑥 = ∅) |
3 | 1, 2 | eqeq12d 2754 |
. 2
⊢ (𝑥 = ∅ →
((1o ·o 𝑥) = 𝑥 ↔ (1o ·o
∅) = ∅)) |
4 | | oveq2 7263 |
. . 3
⊢ (𝑥 = 𝑦 → (1o ·o
𝑥) = (1o
·o 𝑦)) |
5 | | id 22 |
. . 3
⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) |
6 | 4, 5 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝑦 → ((1o ·o
𝑥) = 𝑥 ↔ (1o ·o
𝑦) = 𝑦)) |
7 | | oveq2 7263 |
. . 3
⊢ (𝑥 = suc 𝑦 → (1o ·o
𝑥) = (1o
·o suc 𝑦)) |
8 | | id 22 |
. . 3
⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) |
9 | 7, 8 | eqeq12d 2754 |
. 2
⊢ (𝑥 = suc 𝑦 → ((1o ·o
𝑥) = 𝑥 ↔ (1o ·o
suc 𝑦) = suc 𝑦)) |
10 | | oveq2 7263 |
. . 3
⊢ (𝑥 = 𝐴 → (1o ·o
𝑥) = (1o
·o 𝐴)) |
11 | | id 22 |
. . 3
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
12 | 10, 11 | eqeq12d 2754 |
. 2
⊢ (𝑥 = 𝐴 → ((1o ·o
𝑥) = 𝑥 ↔ (1o ·o
𝐴) = 𝐴)) |
13 | | 1on 8274 |
. . 3
⊢
1o ∈ On |
14 | | om0 8309 |
. . 3
⊢
(1o ∈ On → (1o ·o
∅) = ∅) |
15 | 13, 14 | ax-mp 5 |
. 2
⊢
(1o ·o ∅) = ∅ |
16 | | omsuc 8318 |
. . . . . 6
⊢
((1o ∈ On ∧ 𝑦 ∈ On) → (1o
·o suc 𝑦)
= ((1o ·o 𝑦) +o
1o)) |
17 | 13, 16 | mpan 686 |
. . . . 5
⊢ (𝑦 ∈ On → (1o
·o suc 𝑦)
= ((1o ·o 𝑦) +o
1o)) |
18 | | oveq1 7262 |
. . . . 5
⊢
((1o ·o 𝑦) = 𝑦 → ((1o ·o
𝑦) +o
1o) = (𝑦
+o 1o)) |
19 | 17, 18 | sylan9eq 2799 |
. . . 4
⊢ ((𝑦 ∈ On ∧ (1o
·o 𝑦) =
𝑦) → (1o
·o suc 𝑦)
= (𝑦 +o
1o)) |
20 | | oa1suc 8323 |
. . . . 5
⊢ (𝑦 ∈ On → (𝑦 +o 1o) =
suc 𝑦) |
21 | 20 | adantr 480 |
. . . 4
⊢ ((𝑦 ∈ On ∧ (1o
·o 𝑦) =
𝑦) → (𝑦 +o 1o) =
suc 𝑦) |
22 | 19, 21 | eqtrd 2778 |
. . 3
⊢ ((𝑦 ∈ On ∧ (1o
·o 𝑦) =
𝑦) → (1o
·o suc 𝑦)
= suc 𝑦) |
23 | 22 | ex 412 |
. 2
⊢ (𝑦 ∈ On →
((1o ·o 𝑦) = 𝑦 → (1o ·o
suc 𝑦) = suc 𝑦)) |
24 | | iuneq2 4940 |
. . . 4
⊢
(∀𝑦 ∈
𝑥 (1o
·o 𝑦) =
𝑦 → ∪ 𝑦 ∈ 𝑥 (1o ·o 𝑦) = ∪ 𝑦 ∈ 𝑥 𝑦) |
25 | | uniiun 4984 |
. . . 4
⊢ ∪ 𝑥 =
∪ 𝑦 ∈ 𝑥 𝑦 |
26 | 24, 25 | eqtr4di 2797 |
. . 3
⊢
(∀𝑦 ∈
𝑥 (1o
·o 𝑦) =
𝑦 → ∪ 𝑦 ∈ 𝑥 (1o ·o 𝑦) = ∪
𝑥) |
27 | | vex 3426 |
. . . . 5
⊢ 𝑥 ∈ V |
28 | | omlim 8325 |
. . . . . 6
⊢
((1o ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (1o ·o
𝑥) = ∪ 𝑦 ∈ 𝑥 (1o ·o 𝑦)) |
29 | 13, 28 | mpan 686 |
. . . . 5
⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (1o
·o 𝑥) =
∪ 𝑦 ∈ 𝑥 (1o ·o 𝑦)) |
30 | 27, 29 | mpan 686 |
. . . 4
⊢ (Lim
𝑥 → (1o
·o 𝑥) =
∪ 𝑦 ∈ 𝑥 (1o ·o 𝑦)) |
31 | | limuni 6311 |
. . . 4
⊢ (Lim
𝑥 → 𝑥 = ∪ 𝑥) |
32 | 30, 31 | eqeq12d 2754 |
. . 3
⊢ (Lim
𝑥 → ((1o
·o 𝑥) =
𝑥 ↔ ∪ 𝑦 ∈ 𝑥 (1o ·o 𝑦) = ∪
𝑥)) |
33 | 26, 32 | syl5ibr 245 |
. 2
⊢ (Lim
𝑥 → (∀𝑦 ∈ 𝑥 (1o ·o 𝑦) = 𝑦 → (1o ·o
𝑥) = 𝑥)) |
34 | 3, 6, 9, 12, 15, 23, 33 | tfinds 7681 |
1
⊢ (𝐴 ∈ On → (1o
·o 𝐴) =
𝐴) |