Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfom6 Structured version   Visualization version   GIF version

Theorem dfom6 43434
Description: Let ω be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
dfom6 ω = (On ∩ Fin)

Proof of Theorem dfom6
StepHypRef Expression
1 limom 7915 . . 3 Lim ω
2 limuni 6455 . . 3 (Lim ω → ω = ω)
31, 2ax-mp 5 . 2 ω = ω
4 onfin2 9290 . . 3 ω = (On ∩ Fin)
54unieqi 4943 . 2 ω = (On ∩ Fin)
63, 5eqtri 2762 1 ω = (On ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3969   cuni 4931  Oncon0 6394  Lim wlim 6395  ωcom 7899  Fincfn 8999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-om 7900  df-1o 8518  df-en 9000  df-dom 9001  df-sdom 9002  df-fin 9003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator