Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfom6 Structured version   Visualization version   GIF version

Theorem dfom6 43535
Description: Let ω be defined to be the union of the set of all finite ordinals. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
dfom6 ω = (On ∩ Fin)

Proof of Theorem dfom6
StepHypRef Expression
1 limom 7907 . . 3 Lim ω
2 limuni 6450 . . 3 (Lim ω → ω = ω)
31, 2ax-mp 5 . 2 ω = ω
4 onfin2 9272 . . 3 ω = (On ∩ Fin)
54unieqi 4925 . 2 ω = (On ∩ Fin)
63, 5eqtri 2764 1 ω = (On ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  cin 3963   cuni 4913  Oncon0 6389  Lim wlim 6390  ωcom 7891  Fincfn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-om 7892  df-1o 8511  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator