Step | Hyp | Ref
| Expression |
1 | | elex 3426 |
. . . . 5
⊢ (suc
𝐴 ∈ Top → suc
𝐴 ∈
V) |
2 | | sucexb 7588 |
. . . . 5
⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) |
3 | 1, 2 | sylibr 237 |
. . . 4
⊢ (suc
𝐴 ∈ Top → 𝐴 ∈ V) |
4 | | sssucid 6290 |
. . . . 5
⊢ 𝐴 ⊆ suc 𝐴 |
5 | | elpwg 4516 |
. . . . 5
⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 suc 𝐴 ↔ 𝐴 ⊆ suc 𝐴)) |
6 | 4, 5 | mpbiri 261 |
. . . 4
⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 suc 𝐴) |
7 | | limsucncmpi.1 |
. . . . . . 7
⊢ Lim 𝐴 |
8 | | limuni 6273 |
. . . . . . 7
⊢ (Lim
𝐴 → 𝐴 = ∪ 𝐴) |
9 | 7, 8 | ax-mp 5 |
. . . . . 6
⊢ 𝐴 = ∪
𝐴 |
10 | | elin 3882 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝐴 ∧ 𝑧 ∈ Fin)) |
11 | | elpwi 4522 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝒫 𝐴 → 𝑧 ⊆ 𝐴) |
12 | 11 | anim1i 618 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝒫 𝐴 ∧ 𝑧 ∈ Fin) → (𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin)) |
13 | 10, 12 | sylbi 220 |
. . . . . . . . 9
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin)) |
14 | | nlim0 6271 |
. . . . . . . . . . . . . . . 16
⊢ ¬
Lim ∅ |
15 | 7, 14 | 2th 267 |
. . . . . . . . . . . . . . 15
⊢ (Lim
𝐴 ↔ ¬ Lim
∅) |
16 | | xor3 387 |
. . . . . . . . . . . . . . 15
⊢ (¬
(Lim 𝐴 ↔ Lim ∅)
↔ (Lim 𝐴 ↔ ¬
Lim ∅)) |
17 | 15, 16 | mpbir 234 |
. . . . . . . . . . . . . 14
⊢ ¬
(Lim 𝐴 ↔ Lim
∅) |
18 | | limeq 6225 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 = ∅ → (Lim 𝐴 ↔ Lim
∅)) |
19 | 18 | necon3bi 2967 |
. . . . . . . . . . . . . 14
⊢ (¬
(Lim 𝐴 ↔ Lim ∅)
→ 𝐴 ≠
∅) |
20 | 17, 19 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 𝐴 ≠ ∅ |
21 | | uni0 4849 |
. . . . . . . . . . . . 13
⊢ ∪ ∅ = ∅ |
22 | 20, 21 | neeqtrri 3014 |
. . . . . . . . . . . 12
⊢ 𝐴 ≠ ∪ ∅ |
23 | | unieq 4830 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ∅ → ∪ 𝑧 =
∪ ∅) |
24 | 23 | neeq2d 3001 |
. . . . . . . . . . . 12
⊢ (𝑧 = ∅ → (𝐴 ≠ ∪ 𝑧
↔ 𝐴 ≠ ∪ ∅)) |
25 | 22, 24 | mpbiri 261 |
. . . . . . . . . . 11
⊢ (𝑧 = ∅ → 𝐴 ≠ ∪ 𝑧) |
26 | 25 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin) → (𝑧 = ∅ → 𝐴 ≠ ∪ 𝑧)) |
27 | | limord 6272 |
. . . . . . . . . . . . . 14
⊢ (Lim
𝐴 → Ord 𝐴) |
28 | | ordsson 7567 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
29 | 7, 27, 28 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ 𝐴 ⊆ On |
30 | | sstr2 3908 |
. . . . . . . . . . . . 13
⊢ (𝑧 ⊆ 𝐴 → (𝐴 ⊆ On → 𝑧 ⊆ On)) |
31 | 29, 30 | mpi 20 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ 𝐴 → 𝑧 ⊆ On) |
32 | | ordunifi 8921 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ⊆ On ∧ 𝑧 ∈ Fin ∧ 𝑧 ≠ ∅) → ∪ 𝑧
∈ 𝑧) |
33 | 32 | 3expia 1123 |
. . . . . . . . . . . 12
⊢ ((𝑧 ⊆ On ∧ 𝑧 ∈ Fin) → (𝑧 ≠ ∅ → ∪ 𝑧
∈ 𝑧)) |
34 | 31, 33 | sylan 583 |
. . . . . . . . . . 11
⊢ ((𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin) → (𝑧 ≠ ∅ → ∪ 𝑧
∈ 𝑧)) |
35 | | ssel 3893 |
. . . . . . . . . . . . 13
⊢ (𝑧 ⊆ 𝐴 → (∪ 𝑧 ∈ 𝑧 → ∪ 𝑧 ∈ 𝐴)) |
36 | 7, 27 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ Ord 𝐴 |
37 | | nordeq 6232 |
. . . . . . . . . . . . . 14
⊢ ((Ord
𝐴 ∧ ∪ 𝑧
∈ 𝐴) → 𝐴 ≠ ∪ 𝑧) |
38 | 36, 37 | mpan 690 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑧
∈ 𝐴 → 𝐴 ≠ ∪ 𝑧) |
39 | 35, 38 | syl6 35 |
. . . . . . . . . . . 12
⊢ (𝑧 ⊆ 𝐴 → (∪ 𝑧 ∈ 𝑧 → 𝐴 ≠ ∪ 𝑧)) |
40 | 39 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin) → (∪ 𝑧
∈ 𝑧 → 𝐴 ≠ ∪ 𝑧)) |
41 | 34, 40 | syld 47 |
. . . . . . . . . 10
⊢ ((𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin) → (𝑧 ≠ ∅ → 𝐴 ≠ ∪ 𝑧)) |
42 | 26, 41 | pm2.61dne 3028 |
. . . . . . . . 9
⊢ ((𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin) → 𝐴 ≠ ∪ 𝑧) |
43 | 13, 42 | syl 17 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝐴 ≠ ∪ 𝑧) |
44 | 43 | neneqd 2945 |
. . . . . . 7
⊢ (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ¬ 𝐴 = ∪
𝑧) |
45 | 44 | nrex 3188 |
. . . . . 6
⊢ ¬
∃𝑧 ∈ (𝒫
𝐴 ∩ Fin)𝐴 = ∪
𝑧 |
46 | | unieq 4830 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ∪ 𝑦 = ∪
𝐴) |
47 | 46 | eqeq2d 2748 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (𝐴 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝐴)) |
48 | | pweq 4529 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴) |
49 | 48 | ineq1d 4126 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝒫 𝑦 ∩ Fin) = (𝒫 𝐴 ∩ Fin)) |
50 | 49 | rexeqdv 3326 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = ∪ 𝑧)) |
51 | 50 | notbid 321 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧 ↔ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = ∪ 𝑧)) |
52 | 47, 51 | anbi12d 634 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → ((𝐴 = ∪ 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧) ↔ (𝐴 = ∪ 𝐴 ∧ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = ∪ 𝑧))) |
53 | 52 | rspcev 3537 |
. . . . . 6
⊢ ((𝐴 ∈ 𝒫 suc 𝐴 ∧ (𝐴 = ∪ 𝐴 ∧ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = ∪ 𝑧)) → ∃𝑦 ∈ 𝒫 suc 𝐴(𝐴 = ∪ 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧)) |
54 | 9, 45, 53 | mpanr12 705 |
. . . . 5
⊢ (𝐴 ∈ 𝒫 suc 𝐴 → ∃𝑦 ∈ 𝒫 suc 𝐴(𝐴 = ∪ 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧)) |
55 | | rexanali 3184 |
. . . . 5
⊢
(∃𝑦 ∈
𝒫 suc 𝐴(𝐴 = ∪
𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧) ↔ ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧)) |
56 | 54, 55 | sylib 221 |
. . . 4
⊢ (𝐴 ∈ 𝒫 suc 𝐴 → ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧)) |
57 | 3, 6, 56 | 3syl 18 |
. . 3
⊢ (suc
𝐴 ∈ Top → ¬
∀𝑦 ∈ 𝒫
suc 𝐴(𝐴 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧)) |
58 | | imnan 403 |
. . 3
⊢ ((suc
𝐴 ∈ Top → ¬
∀𝑦 ∈ 𝒫
suc 𝐴(𝐴 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧)) ↔ ¬ (suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧))) |
59 | 57, 58 | mpbi 233 |
. 2
⊢ ¬
(suc 𝐴 ∈ Top ∧
∀𝑦 ∈ 𝒫
suc 𝐴(𝐴 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧)) |
60 | | ordunisuc 7611 |
. . . . 5
⊢ (Ord
𝐴 → ∪ suc 𝐴 = 𝐴) |
61 | 7, 27, 60 | mp2b 10 |
. . . 4
⊢ ∪ suc 𝐴 = 𝐴 |
62 | 61 | eqcomi 2746 |
. . 3
⊢ 𝐴 = ∪
suc 𝐴 |
63 | 62 | iscmp 22285 |
. 2
⊢ (suc
𝐴 ∈ Comp ↔ (suc
𝐴 ∈ Top ∧
∀𝑦 ∈ 𝒫
suc 𝐴(𝐴 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = ∪ 𝑧))) |
64 | 59, 63 | mtbir 326 |
1
⊢ ¬
suc 𝐴 ∈
Comp |