Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsucncmpi Structured version   Visualization version   GIF version

Theorem limsucncmpi 33402
Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
Hypothesis
Ref Expression
limsucncmpi.1 Lim 𝐴
Assertion
Ref Expression
limsucncmpi ¬ suc 𝐴 ∈ Comp

Proof of Theorem limsucncmpi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3455 . . . . 5 (suc 𝐴 ∈ Top → suc 𝐴 ∈ V)
2 sucexb 7380 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylibr 235 . . . 4 (suc 𝐴 ∈ Top → 𝐴 ∈ V)
4 sssucid 6143 . . . . 5 𝐴 ⊆ suc 𝐴
5 elpwg 4461 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 suc 𝐴𝐴 ⊆ suc 𝐴))
64, 5mpbiri 259 . . . 4 (𝐴 ∈ V → 𝐴 ∈ 𝒫 suc 𝐴)
7 limsucncmpi.1 . . . . . . 7 Lim 𝐴
8 limuni 6126 . . . . . . 7 (Lim 𝐴𝐴 = 𝐴)
97, 8ax-mp 5 . . . . . 6 𝐴 = 𝐴
10 elin 4090 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝐴𝑧 ∈ Fin))
11 elpwi 4463 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 𝐴𝑧𝐴)
1211anim1i 614 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 𝐴𝑧 ∈ Fin) → (𝑧𝐴𝑧 ∈ Fin))
1310, 12sylbi 218 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝑧𝐴𝑧 ∈ Fin))
14 nlim0 6124 . . . . . . . . . . . . . . . 16 ¬ Lim ∅
157, 142th 265 . . . . . . . . . . . . . . 15 (Lim 𝐴 ↔ ¬ Lim ∅)
16 xor3 384 . . . . . . . . . . . . . . 15 (¬ (Lim 𝐴 ↔ Lim ∅) ↔ (Lim 𝐴 ↔ ¬ Lim ∅))
1715, 16mpbir 232 . . . . . . . . . . . . . 14 ¬ (Lim 𝐴 ↔ Lim ∅)
18 limeq 6078 . . . . . . . . . . . . . . 15 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
1918necon3bi 3010 . . . . . . . . . . . . . 14 (¬ (Lim 𝐴 ↔ Lim ∅) → 𝐴 ≠ ∅)
2017, 19ax-mp 5 . . . . . . . . . . . . 13 𝐴 ≠ ∅
21 uni0 4772 . . . . . . . . . . . . 13 ∅ = ∅
2220, 21neeqtrri 3057 . . . . . . . . . . . 12 𝐴
23 unieq 4753 . . . . . . . . . . . . 13 (𝑧 = ∅ → 𝑧 = ∅)
2423neeq2d 3044 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝐴 𝑧𝐴 ∅))
2522, 24mpbiri 259 . . . . . . . . . . 11 (𝑧 = ∅ → 𝐴 𝑧)
2625a1i 11 . . . . . . . . . 10 ((𝑧𝐴𝑧 ∈ Fin) → (𝑧 = ∅ → 𝐴 𝑧))
27 limord 6125 . . . . . . . . . . . . . 14 (Lim 𝐴 → Ord 𝐴)
28 ordsson 7360 . . . . . . . . . . . . . 14 (Ord 𝐴𝐴 ⊆ On)
297, 27, 28mp2b 10 . . . . . . . . . . . . 13 𝐴 ⊆ On
30 sstr2 3896 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝐴 ⊆ On → 𝑧 ⊆ On))
3129, 30mpi 20 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ⊆ On)
32 ordunifi 8614 . . . . . . . . . . . . 13 ((𝑧 ⊆ On ∧ 𝑧 ∈ Fin ∧ 𝑧 ≠ ∅) → 𝑧𝑧)
33323expia 1114 . . . . . . . . . . . 12 ((𝑧 ⊆ On ∧ 𝑧 ∈ Fin) → (𝑧 ≠ ∅ → 𝑧𝑧))
3431, 33sylan 580 . . . . . . . . . . 11 ((𝑧𝐴𝑧 ∈ Fin) → (𝑧 ≠ ∅ → 𝑧𝑧))
35 ssel 3883 . . . . . . . . . . . . 13 (𝑧𝐴 → ( 𝑧𝑧 𝑧𝐴))
367, 27ax-mp 5 . . . . . . . . . . . . . 14 Ord 𝐴
37 nordeq 6085 . . . . . . . . . . . . . 14 ((Ord 𝐴 𝑧𝐴) → 𝐴 𝑧)
3836, 37mpan 686 . . . . . . . . . . . . 13 ( 𝑧𝐴𝐴 𝑧)
3935, 38syl6 35 . . . . . . . . . . . 12 (𝑧𝐴 → ( 𝑧𝑧𝐴 𝑧))
4039adantr 481 . . . . . . . . . . 11 ((𝑧𝐴𝑧 ∈ Fin) → ( 𝑧𝑧𝐴 𝑧))
4134, 40syld 47 . . . . . . . . . 10 ((𝑧𝐴𝑧 ∈ Fin) → (𝑧 ≠ ∅ → 𝐴 𝑧))
4226, 41pm2.61dne 3071 . . . . . . . . 9 ((𝑧𝐴𝑧 ∈ Fin) → 𝐴 𝑧)
4313, 42syl 17 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝐴 𝑧)
4443neneqd 2989 . . . . . . 7 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ¬ 𝐴 = 𝑧)
4544nrex 3232 . . . . . 6 ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧
46 unieq 4753 . . . . . . . . 9 (𝑦 = 𝐴 𝑦 = 𝐴)
4746eqeq2d 2805 . . . . . . . 8 (𝑦 = 𝐴 → (𝐴 = 𝑦𝐴 = 𝐴))
48 pweq 4456 . . . . . . . . . . 11 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
4948ineq1d 4108 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝒫 𝑦 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
5049rexeqdv 3376 . . . . . . . . 9 (𝑦 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧))
5150notbid 319 . . . . . . . 8 (𝑦 = 𝐴 → (¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧 ↔ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧))
5247, 51anbi12d 630 . . . . . . 7 (𝑦 = 𝐴 → ((𝐴 = 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧) ↔ (𝐴 = 𝐴 ∧ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧)))
5352rspcev 3559 . . . . . 6 ((𝐴 ∈ 𝒫 suc 𝐴 ∧ (𝐴 = 𝐴 ∧ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧)) → ∃𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
549, 45, 53mpanr12 701 . . . . 5 (𝐴 ∈ 𝒫 suc 𝐴 → ∃𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
55 rexanali 3229 . . . . 5 (∃𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧) ↔ ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
5654, 55sylib 219 . . . 4 (𝐴 ∈ 𝒫 suc 𝐴 → ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
573, 6, 563syl 18 . . 3 (suc 𝐴 ∈ Top → ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
58 imnan 400 . . 3 ((suc 𝐴 ∈ Top → ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧)) ↔ ¬ (suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧)))
5957, 58mpbi 231 . 2 ¬ (suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
60 ordunisuc 7403 . . . . 5 (Ord 𝐴 suc 𝐴 = 𝐴)
617, 27, 60mp2b 10 . . . 4 suc 𝐴 = 𝐴
6261eqcomi 2804 . . 3 𝐴 = suc 𝐴
6362iscmp 21680 . 2 (suc 𝐴 ∈ Comp ↔ (suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧)))
6459, 63mtbir 324 1 ¬ suc 𝐴 ∈ Comp
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  cin 3858  wss 3859  c0 4211  𝒫 cpw 4453   cuni 4745  Ord word 6065  Oncon0 6066  Lim wlim 6067  suc csuc 6068  Fincfn 8357  Topctop 21185  Compccmp 21678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-om 7437  df-1o 7953  df-er 8139  df-en 8358  df-fin 8361  df-cmp 21679
This theorem is referenced by:  limsucncmp  33403
  Copyright terms: Public domain W3C validator