Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsucncmpi Structured version   Visualization version   GIF version

Theorem limsucncmpi 34730
Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
Hypothesis
Ref Expression
limsucncmpi.1 Lim 𝐴
Assertion
Ref Expression
limsucncmpi ¬ suc 𝐴 ∈ Comp

Proof of Theorem limsucncmpi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . . . 5 (suc 𝐴 ∈ Top → suc 𝐴 ∈ V)
2 sucexb 7717 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
31, 2sylibr 233 . . . 4 (suc 𝐴 ∈ Top → 𝐴 ∈ V)
4 sssucid 6381 . . . . 5 𝐴 ⊆ suc 𝐴
5 elpwg 4550 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ 𝒫 suc 𝐴𝐴 ⊆ suc 𝐴))
64, 5mpbiri 257 . . . 4 (𝐴 ∈ V → 𝐴 ∈ 𝒫 suc 𝐴)
7 limsucncmpi.1 . . . . . . 7 Lim 𝐴
8 limuni 6362 . . . . . . 7 (Lim 𝐴𝐴 = 𝐴)
97, 8ax-mp 5 . . . . . 6 𝐴 = 𝐴
10 elin 3914 . . . . . . . . . 10 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑧 ∈ 𝒫 𝐴𝑧 ∈ Fin))
11 elpwi 4554 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 𝐴𝑧𝐴)
1211anim1i 615 . . . . . . . . . 10 ((𝑧 ∈ 𝒫 𝐴𝑧 ∈ Fin) → (𝑧𝐴𝑧 ∈ Fin))
1310, 12sylbi 216 . . . . . . . . 9 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → (𝑧𝐴𝑧 ∈ Fin))
14 nlim0 6360 . . . . . . . . . . . . . . . 16 ¬ Lim ∅
157, 142th 263 . . . . . . . . . . . . . . 15 (Lim 𝐴 ↔ ¬ Lim ∅)
16 xor3 383 . . . . . . . . . . . . . . 15 (¬ (Lim 𝐴 ↔ Lim ∅) ↔ (Lim 𝐴 ↔ ¬ Lim ∅))
1715, 16mpbir 230 . . . . . . . . . . . . . 14 ¬ (Lim 𝐴 ↔ Lim ∅)
18 limeq 6314 . . . . . . . . . . . . . . 15 (𝐴 = ∅ → (Lim 𝐴 ↔ Lim ∅))
1918necon3bi 2967 . . . . . . . . . . . . . 14 (¬ (Lim 𝐴 ↔ Lim ∅) → 𝐴 ≠ ∅)
2017, 19ax-mp 5 . . . . . . . . . . . . 13 𝐴 ≠ ∅
21 uni0 4883 . . . . . . . . . . . . 13 ∅ = ∅
2220, 21neeqtrri 3014 . . . . . . . . . . . 12 𝐴
23 unieq 4863 . . . . . . . . . . . . 13 (𝑧 = ∅ → 𝑧 = ∅)
2423neeq2d 3001 . . . . . . . . . . . 12 (𝑧 = ∅ → (𝐴 𝑧𝐴 ∅))
2522, 24mpbiri 257 . . . . . . . . . . 11 (𝑧 = ∅ → 𝐴 𝑧)
2625a1i 11 . . . . . . . . . 10 ((𝑧𝐴𝑧 ∈ Fin) → (𝑧 = ∅ → 𝐴 𝑧))
27 limord 6361 . . . . . . . . . . . . . 14 (Lim 𝐴 → Ord 𝐴)
28 ordsson 7695 . . . . . . . . . . . . . 14 (Ord 𝐴𝐴 ⊆ On)
297, 27, 28mp2b 10 . . . . . . . . . . . . 13 𝐴 ⊆ On
30 sstr2 3939 . . . . . . . . . . . . 13 (𝑧𝐴 → (𝐴 ⊆ On → 𝑧 ⊆ On))
3129, 30mpi 20 . . . . . . . . . . . 12 (𝑧𝐴𝑧 ⊆ On)
32 ordunifi 9158 . . . . . . . . . . . . 13 ((𝑧 ⊆ On ∧ 𝑧 ∈ Fin ∧ 𝑧 ≠ ∅) → 𝑧𝑧)
33323expia 1120 . . . . . . . . . . . 12 ((𝑧 ⊆ On ∧ 𝑧 ∈ Fin) → (𝑧 ≠ ∅ → 𝑧𝑧))
3431, 33sylan 580 . . . . . . . . . . 11 ((𝑧𝐴𝑧 ∈ Fin) → (𝑧 ≠ ∅ → 𝑧𝑧))
35 ssel 3925 . . . . . . . . . . . . 13 (𝑧𝐴 → ( 𝑧𝑧 𝑧𝐴))
367, 27ax-mp 5 . . . . . . . . . . . . . 14 Ord 𝐴
37 nordeq 6321 . . . . . . . . . . . . . 14 ((Ord 𝐴 𝑧𝐴) → 𝐴 𝑧)
3836, 37mpan 687 . . . . . . . . . . . . 13 ( 𝑧𝐴𝐴 𝑧)
3935, 38syl6 35 . . . . . . . . . . . 12 (𝑧𝐴 → ( 𝑧𝑧𝐴 𝑧))
4039adantr 481 . . . . . . . . . . 11 ((𝑧𝐴𝑧 ∈ Fin) → ( 𝑧𝑧𝐴 𝑧))
4134, 40syld 47 . . . . . . . . . 10 ((𝑧𝐴𝑧 ∈ Fin) → (𝑧 ≠ ∅ → 𝐴 𝑧))
4226, 41pm2.61dne 3028 . . . . . . . . 9 ((𝑧𝐴𝑧 ∈ Fin) → 𝐴 𝑧)
4313, 42syl 17 . . . . . . . 8 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → 𝐴 𝑧)
4443neneqd 2945 . . . . . . 7 (𝑧 ∈ (𝒫 𝐴 ∩ Fin) → ¬ 𝐴 = 𝑧)
4544nrex 3074 . . . . . 6 ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧
46 unieq 4863 . . . . . . . . 9 (𝑦 = 𝐴 𝑦 = 𝐴)
4746eqeq2d 2747 . . . . . . . 8 (𝑦 = 𝐴 → (𝐴 = 𝑦𝐴 = 𝐴))
48 pweq 4561 . . . . . . . . . . 11 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
4948ineq1d 4158 . . . . . . . . . 10 (𝑦 = 𝐴 → (𝒫 𝑦 ∩ Fin) = (𝒫 𝐴 ∩ Fin))
5049rexeqdv 3310 . . . . . . . . 9 (𝑦 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧))
5150notbid 317 . . . . . . . 8 (𝑦 = 𝐴 → (¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧 ↔ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧))
5247, 51anbi12d 631 . . . . . . 7 (𝑦 = 𝐴 → ((𝐴 = 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧) ↔ (𝐴 = 𝐴 ∧ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧)))
5352rspcev 3570 . . . . . 6 ((𝐴 ∈ 𝒫 suc 𝐴 ∧ (𝐴 = 𝐴 ∧ ¬ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)𝐴 = 𝑧)) → ∃𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
549, 45, 53mpanr12 702 . . . . 5 (𝐴 ∈ 𝒫 suc 𝐴 → ∃𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
55 rexanali 3101 . . . . 5 (∃𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 ∧ ¬ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧) ↔ ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
5654, 55sylib 217 . . . 4 (𝐴 ∈ 𝒫 suc 𝐴 → ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
573, 6, 563syl 18 . . 3 (suc 𝐴 ∈ Top → ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
58 imnan 400 . . 3 ((suc 𝐴 ∈ Top → ¬ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧)) ↔ ¬ (suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧)))
5957, 58mpbi 229 . 2 ¬ (suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧))
60 ordunisuc 7745 . . . . 5 (Ord 𝐴 suc 𝐴 = 𝐴)
617, 27, 60mp2b 10 . . . 4 suc 𝐴 = 𝐴
6261eqcomi 2745 . . 3 𝐴 = suc 𝐴
6362iscmp 22645 . 2 (suc 𝐴 ∈ Comp ↔ (suc 𝐴 ∈ Top ∧ ∀𝑦 ∈ 𝒫 suc 𝐴(𝐴 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝐴 = 𝑧)))
6459, 63mtbir 322 1 ¬ suc 𝐴 ∈ Comp
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  Vcvv 3441  cin 3897  wss 3898  c0 4269  𝒫 cpw 4547   cuni 4852  Ord word 6301  Oncon0 6302  Lim wlim 6303  suc csuc 6304  Fincfn 8804  Topctop 22148  Compccmp 22643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-om 7781  df-en 8805  df-fin 8808  df-cmp 22644
This theorem is referenced by:  limsucncmp  34731
  Copyright terms: Public domain W3C validator