Step | Hyp | Ref
| Expression |
1 | | cfss.1 |
. . . . . 6
β’ π΄ β V |
2 | 1 | cflim3 10254 |
. . . . 5
β’ (Lim
π΄ β (cfβπ΄) = β© π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cardβπ₯)) |
3 | | fvex 6902 |
. . . . . . 7
β’
(cardβπ₯)
β V |
4 | 3 | dfiin2 5037 |
. . . . . 6
β’ β© π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cardβπ₯) = β© {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} |
5 | | cardon 9936 |
. . . . . . . . . 10
β’
(cardβπ₯)
β On |
6 | | eleq1 2822 |
. . . . . . . . . 10
β’ (π¦ = (cardβπ₯) β (π¦ β On β (cardβπ₯) β On)) |
7 | 5, 6 | mpbiri 258 |
. . . . . . . . 9
β’ (π¦ = (cardβπ₯) β π¦ β On) |
8 | 7 | rexlimivw 3152 |
. . . . . . . 8
β’
(βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄}π¦ = (cardβπ₯) β π¦ β On) |
9 | 8 | abssi 4067 |
. . . . . . 7
β’ {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} β On |
10 | | limuni 6423 |
. . . . . . . . . . . 12
β’ (Lim
π΄ β π΄ = βͺ π΄) |
11 | 10 | eqcomd 2739 |
. . . . . . . . . . 11
β’ (Lim
π΄ β βͺ π΄ =
π΄) |
12 | | fveq2 6889 |
. . . . . . . . . . . . . . 15
β’ (π₯ = π΄ β (cardβπ₯) = (cardβπ΄)) |
13 | 12 | eqcomd 2739 |
. . . . . . . . . . . . . 14
β’ (π₯ = π΄ β (cardβπ΄) = (cardβπ₯)) |
14 | 13 | biantrud 533 |
. . . . . . . . . . . . 13
β’ (π₯ = π΄ β (βͺ π΄ = π΄ β (βͺ π΄ = π΄ β§ (cardβπ΄) = (cardβπ₯)))) |
15 | | unieq 4919 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = π΄ β βͺ π₯ = βͺ
π΄) |
16 | 15 | eqeq1d 2735 |
. . . . . . . . . . . . . . 15
β’ (π₯ = π΄ β (βͺ π₯ = π΄ β βͺ π΄ = π΄)) |
17 | 1 | pwid 4624 |
. . . . . . . . . . . . . . . . 17
β’ π΄ β π« π΄ |
18 | | eleq1 2822 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ = π΄ β (π₯ β π« π΄ β π΄ β π« π΄)) |
19 | 17, 18 | mpbiri 258 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = π΄ β π₯ β π« π΄) |
20 | 19 | biantrurd 534 |
. . . . . . . . . . . . . . 15
β’ (π₯ = π΄ β (βͺ π₯ = π΄ β (π₯ β π« π΄ β§ βͺ π₯ = π΄))) |
21 | 16, 20 | bitr3d 281 |
. . . . . . . . . . . . . 14
β’ (π₯ = π΄ β (βͺ π΄ = π΄ β (π₯ β π« π΄ β§ βͺ π₯ = π΄))) |
22 | 21 | anbi1d 631 |
. . . . . . . . . . . . 13
β’ (π₯ = π΄ β ((βͺ π΄ = π΄ β§ (cardβπ΄) = (cardβπ₯)) β ((π₯ β π« π΄ β§ βͺ π₯ = π΄) β§ (cardβπ΄) = (cardβπ₯)))) |
23 | 14, 22 | bitr2d 280 |
. . . . . . . . . . . 12
β’ (π₯ = π΄ β (((π₯ β π« π΄ β§ βͺ π₯ = π΄) β§ (cardβπ΄) = (cardβπ₯)) β βͺ π΄ = π΄)) |
24 | 1, 23 | spcev 3597 |
. . . . . . . . . . 11
β’ (βͺ π΄ =
π΄ β βπ₯((π₯ β π« π΄ β§ βͺ π₯ = π΄) β§ (cardβπ΄) = (cardβπ₯))) |
25 | 11, 24 | syl 17 |
. . . . . . . . . 10
β’ (Lim
π΄ β βπ₯((π₯ β π« π΄ β§ βͺ π₯ = π΄) β§ (cardβπ΄) = (cardβπ₯))) |
26 | | df-rex 3072 |
. . . . . . . . . . 11
β’
(βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄} (cardβπ΄) = (cardβπ₯) β βπ₯(π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cardβπ΄) = (cardβπ₯))) |
27 | | rabid 3453 |
. . . . . . . . . . . . 13
β’ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β (π₯ β π« π΄ β§ βͺ π₯ = π΄)) |
28 | 27 | anbi1i 625 |
. . . . . . . . . . . 12
β’ ((π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cardβπ΄) = (cardβπ₯)) β ((π₯ β π« π΄ β§ βͺ π₯ = π΄) β§ (cardβπ΄) = (cardβπ₯))) |
29 | 28 | exbii 1851 |
. . . . . . . . . . 11
β’
(βπ₯(π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cardβπ΄) = (cardβπ₯)) β βπ₯((π₯ β π« π΄ β§ βͺ π₯ = π΄) β§ (cardβπ΄) = (cardβπ₯))) |
30 | 26, 29 | bitri 275 |
. . . . . . . . . 10
β’
(βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄} (cardβπ΄) = (cardβπ₯) β βπ₯((π₯ β π« π΄ β§ βͺ π₯ = π΄) β§ (cardβπ΄) = (cardβπ₯))) |
31 | 25, 30 | sylibr 233 |
. . . . . . . . 9
β’ (Lim
π΄ β βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cardβπ΄) = (cardβπ₯)) |
32 | | fvex 6902 |
. . . . . . . . . 10
β’
(cardβπ΄)
β V |
33 | | eqeq1 2737 |
. . . . . . . . . . 11
β’ (π¦ = (cardβπ΄) β (π¦ = (cardβπ₯) β (cardβπ΄) = (cardβπ₯))) |
34 | 33 | rexbidv 3179 |
. . . . . . . . . 10
β’ (π¦ = (cardβπ΄) β (βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯) β βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cardβπ΄) = (cardβπ₯))) |
35 | 32, 34 | spcev 3597 |
. . . . . . . . 9
β’
(βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄} (cardβπ΄) = (cardβπ₯) β βπ¦βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)) |
36 | 31, 35 | syl 17 |
. . . . . . . 8
β’ (Lim
π΄ β βπ¦βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)) |
37 | | abn0 4380 |
. . . . . . . 8
β’ ({π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} β β
β βπ¦βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)) |
38 | 36, 37 | sylibr 233 |
. . . . . . 7
β’ (Lim
π΄ β {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} β β
) |
39 | | onint 7775 |
. . . . . . 7
β’ (({π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} β On β§ {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} β β
) β β© {π¦
β£ βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄}π¦ = (cardβπ₯)} β {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)}) |
40 | 9, 38, 39 | sylancr 588 |
. . . . . 6
β’ (Lim
π΄ β β© {π¦
β£ βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄}π¦ = (cardβπ₯)} β {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)}) |
41 | 4, 40 | eqeltrid 2838 |
. . . . 5
β’ (Lim
π΄ β β© π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cardβπ₯) β {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)}) |
42 | 2, 41 | eqeltrd 2834 |
. . . 4
β’ (Lim
π΄ β (cfβπ΄) β {π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)}) |
43 | | fvex 6902 |
. . . . 5
β’
(cfβπ΄) β
V |
44 | | eqeq1 2737 |
. . . . . 6
β’ (π¦ = (cfβπ΄) β (π¦ = (cardβπ₯) β (cfβπ΄) = (cardβπ₯))) |
45 | 44 | rexbidv 3179 |
. . . . 5
β’ (π¦ = (cfβπ΄) β (βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯) β βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cfβπ΄) = (cardβπ₯))) |
46 | 43, 45 | elab 3668 |
. . . 4
β’
((cfβπ΄) β
{π¦ β£ βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}π¦ = (cardβπ₯)} β βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cfβπ΄) = (cardβπ₯)) |
47 | 42, 46 | sylib 217 |
. . 3
β’ (Lim
π΄ β βπ₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} (cfβπ΄) = (cardβπ₯)) |
48 | | df-rex 3072 |
. . 3
β’
(βπ₯ β
{π₯ β π« π΄ β£ βͺ π₯ =
π΄} (cfβπ΄) = (cardβπ₯) β βπ₯(π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) |
49 | 47, 48 | sylib 217 |
. 2
β’ (Lim
π΄ β βπ₯(π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) |
50 | | simprl 770 |
. . . . . . . 8
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄}) |
51 | 50, 27 | sylib 217 |
. . . . . . 7
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β (π₯ β π« π΄ β§ βͺ π₯ = π΄)) |
52 | 51 | simpld 496 |
. . . . . 6
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β π₯ β π« π΄) |
53 | 52 | elpwid 4611 |
. . . . 5
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β π₯ β π΄) |
54 | | simpl 484 |
. . . . . . 7
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β Lim π΄) |
55 | | vex 3479 |
. . . . . . . . . 10
β’ π₯ β V |
56 | | limord 6422 |
. . . . . . . . . . . 12
β’ (Lim
π΄ β Ord π΄) |
57 | | ordsson 7767 |
. . . . . . . . . . . 12
β’ (Ord
π΄ β π΄ β On) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . 11
β’ (Lim
π΄ β π΄ β On) |
59 | | sstr 3990 |
. . . . . . . . . . 11
β’ ((π₯ β π΄ β§ π΄ β On) β π₯ β On) |
60 | 58, 59 | sylan2 594 |
. . . . . . . . . 10
β’ ((π₯ β π΄ β§ Lim π΄) β π₯ β On) |
61 | | onssnum 10032 |
. . . . . . . . . 10
β’ ((π₯ β V β§ π₯ β On) β π₯ β dom
card) |
62 | 55, 60, 61 | sylancr 588 |
. . . . . . . . 9
β’ ((π₯ β π΄ β§ Lim π΄) β π₯ β dom card) |
63 | | cardid2 9945 |
. . . . . . . . 9
β’ (π₯ β dom card β
(cardβπ₯) β
π₯) |
64 | 62, 63 | syl 17 |
. . . . . . . 8
β’ ((π₯ β π΄ β§ Lim π΄) β (cardβπ₯) β π₯) |
65 | 64 | ensymd 8998 |
. . . . . . 7
β’ ((π₯ β π΄ β§ Lim π΄) β π₯ β (cardβπ₯)) |
66 | 53, 54, 65 | syl2anc 585 |
. . . . . 6
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β π₯ β (cardβπ₯)) |
67 | | simprr 772 |
. . . . . 6
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β (cfβπ΄) = (cardβπ₯)) |
68 | 66, 67 | breqtrrd 5176 |
. . . . 5
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β π₯ β (cfβπ΄)) |
69 | 51 | simprd 497 |
. . . . 5
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β βͺ π₯ = π΄) |
70 | 53, 68, 69 | 3jca 1129 |
. . . 4
β’ ((Lim
π΄ β§ (π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯))) β (π₯ β π΄ β§ π₯ β (cfβπ΄) β§ βͺ π₯ = π΄)) |
71 | 70 | ex 414 |
. . 3
β’ (Lim
π΄ β ((π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯)) β (π₯ β π΄ β§ π₯ β (cfβπ΄) β§ βͺ π₯ = π΄))) |
72 | 71 | eximdv 1921 |
. 2
β’ (Lim
π΄ β (βπ₯(π₯ β {π₯ β π« π΄ β£ βͺ π₯ = π΄} β§ (cfβπ΄) = (cardβπ₯)) β βπ₯(π₯ β π΄ β§ π₯ β (cfβπ΄) β§ βͺ π₯ = π΄))) |
73 | 49, 72 | mpd 15 |
1
β’ (Lim
π΄ β βπ₯(π₯ β π΄ β§ π₯ β (cfβπ΄) β§ βͺ π₯ = π΄)) |