MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfss Structured version   Visualization version   GIF version

Theorem cfss 10178
Description: There is a cofinal subset of 𝐴 of cardinality (cf‘𝐴). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfss.1 𝐴 ∈ V
Assertion
Ref Expression
cfss (Lim 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cfss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cfss.1 . . . . . 6 𝐴 ∈ V
21cflim3 10175 . . . . 5 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
3 fvex 6839 . . . . . . 7 (card‘𝑥) ∈ V
43dfiin2 4986 . . . . . 6 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)}
5 cardon 9859 . . . . . . . . . 10 (card‘𝑥) ∈ On
6 eleq1 2816 . . . . . . . . . 10 (𝑦 = (card‘𝑥) → (𝑦 ∈ On ↔ (card‘𝑥) ∈ On))
75, 6mpbiri 258 . . . . . . . . 9 (𝑦 = (card‘𝑥) → 𝑦 ∈ On)
87rexlimivw 3126 . . . . . . . 8 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) → 𝑦 ∈ On)
98abssi 4023 . . . . . . 7 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On
10 limuni 6373 . . . . . . . . . . . 12 (Lim 𝐴𝐴 = 𝐴)
1110eqcomd 2735 . . . . . . . . . . 11 (Lim 𝐴 𝐴 = 𝐴)
12 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴))
1312eqcomd 2735 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (card‘𝐴) = (card‘𝑥))
1413biantrud 531 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ( 𝐴 = 𝐴 ↔ ( 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥))))
15 unieq 4872 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 𝑥 = 𝐴)
1615eqeq1d 2731 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ( 𝑥 = 𝐴 𝐴 = 𝐴))
171pwid 4575 . . . . . . . . . . . . . . . . 17 𝐴 ∈ 𝒫 𝐴
18 eleq1 2816 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐴𝐴 ∈ 𝒫 𝐴))
1917, 18mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴𝑥 ∈ 𝒫 𝐴)
2019biantrurd 532 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴)))
2116, 20bitr3d 281 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → ( 𝐴 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴)))
2221anbi1d 631 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (( 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))))
2314, 22bitr2d 280 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)) ↔ 𝐴 = 𝐴))
241, 23spcev 3563 . . . . . . . . . . 11 ( 𝐴 = 𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
2511, 24syl 17 . . . . . . . . . 10 (Lim 𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
26 df-rex 3054 . . . . . . . . . . 11 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)))
27 rabid 3418 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
2827anbi1i 624 . . . . . . . . . . . 12 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
2928exbii 1848 . . . . . . . . . . 11 (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
3026, 29bitri 275 . . . . . . . . . 10 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
3125, 30sylibr 234 . . . . . . . . 9 (Lim 𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥))
32 fvex 6839 . . . . . . . . . 10 (card‘𝐴) ∈ V
33 eqeq1 2733 . . . . . . . . . . 11 (𝑦 = (card‘𝐴) → (𝑦 = (card‘𝑥) ↔ (card‘𝐴) = (card‘𝑥)))
3433rexbidv 3153 . . . . . . . . . 10 (𝑦 = (card‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥)))
3532, 34spcev 3563 . . . . . . . . 9 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) → ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
3631, 35syl 17 . . . . . . . 8 (Lim 𝐴 → ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
37 abn0 4338 . . . . . . . 8 ({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
3836, 37sylibr 234 . . . . . . 7 (Lim 𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅)
39 onint 7730 . . . . . . 7 (({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
409, 38, 39sylancr 587 . . . . . 6 (Lim 𝐴 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
414, 40eqeltrid 2832 . . . . 5 (Lim 𝐴 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
422, 41eqeltrd 2828 . . . 4 (Lim 𝐴 → (cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
43 fvex 6839 . . . . 5 (cf‘𝐴) ∈ V
44 eqeq1 2733 . . . . . 6 (𝑦 = (cf‘𝐴) → (𝑦 = (card‘𝑥) ↔ (cf‘𝐴) = (card‘𝑥)))
4544rexbidv 3153 . . . . 5 (𝑦 = (cf‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥)))
4643, 45elab 3637 . . . 4 ((cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))
4742, 46sylib 218 . . 3 (Lim 𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))
48 df-rex 3054 . . 3 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)))
4947, 48sylib 218 . 2 (Lim 𝐴 → ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)))
50 simprl 770 . . . . . . . 8 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴})
5150, 27sylib 218 . . . . . . 7 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
5251simpld 494 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ 𝒫 𝐴)
5352elpwid 4562 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥𝐴)
54 simpl 482 . . . . . . 7 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → Lim 𝐴)
55 vex 3442 . . . . . . . . . 10 𝑥 ∈ V
56 limord 6372 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
57 ordsson 7723 . . . . . . . . . . . 12 (Ord 𝐴𝐴 ⊆ On)
5856, 57syl 17 . . . . . . . . . . 11 (Lim 𝐴𝐴 ⊆ On)
59 sstr 3946 . . . . . . . . . . 11 ((𝑥𝐴𝐴 ⊆ On) → 𝑥 ⊆ On)
6058, 59sylan2 593 . . . . . . . . . 10 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ⊆ On)
61 onssnum 9953 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥 ⊆ On) → 𝑥 ∈ dom card)
6255, 60, 61sylancr 587 . . . . . . . . 9 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ∈ dom card)
63 cardid2 9868 . . . . . . . . 9 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
6462, 63syl 17 . . . . . . . 8 ((𝑥𝐴 ∧ Lim 𝐴) → (card‘𝑥) ≈ 𝑥)
6564ensymd 8937 . . . . . . 7 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ≈ (card‘𝑥))
6653, 54, 65syl2anc 584 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (card‘𝑥))
67 simprr 772 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (cf‘𝐴) = (card‘𝑥))
6866, 67breqtrrd 5123 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (cf‘𝐴))
6951simprd 495 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 = 𝐴)
7053, 68, 693jca 1128 . . . 4 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
7170ex 412 . . 3 (Lim 𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → (𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴)))
7271eximdv 1917 . 2 (Lim 𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴)))
7349, 72mpd 15 1 (Lim 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wrex 3053  {crab 3396  Vcvv 3438  wss 3905  c0 4286  𝒫 cpw 4553   cuni 4861   cint 4899   ciin 4945   class class class wbr 5095  dom cdm 5623  Ord word 6310  Oncon0 6311  Lim wlim 6312  cfv 6486  cen 8876  cardccrd 9850  cfccf 9852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-er 8632  df-en 8880  df-dom 8881  df-card 9854  df-cf 9856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator