Step | Hyp | Ref
| Expression |
1 | | cfss.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
2 | 1 | cflim3 9949 |
. . . . 5
⊢ (Lim
𝐴 → (cf‘𝐴) = ∩ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} (card‘𝑥)) |
3 | | fvex 6769 |
. . . . . . 7
⊢
(card‘𝑥)
∈ V |
4 | 3 | dfiin2 4960 |
. . . . . 6
⊢ ∩ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} (card‘𝑥) = ∩ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)} |
5 | | cardon 9633 |
. . . . . . . . . 10
⊢
(card‘𝑥)
∈ On |
6 | | eleq1 2826 |
. . . . . . . . . 10
⊢ (𝑦 = (card‘𝑥) → (𝑦 ∈ On ↔ (card‘𝑥) ∈ On)) |
7 | 5, 6 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝑦 = (card‘𝑥) → 𝑦 ∈ On) |
8 | 7 | rexlimivw 3210 |
. . . . . . . 8
⊢
(∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 =
𝐴}𝑦 = (card‘𝑥) → 𝑦 ∈ On) |
9 | 8 | abssi 3999 |
. . . . . . 7
⊢ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On |
10 | | limuni 6311 |
. . . . . . . . . . . 12
⊢ (Lim
𝐴 → 𝐴 = ∪ 𝐴) |
11 | 10 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (Lim
𝐴 → ∪ 𝐴 =
𝐴) |
12 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴)) |
13 | 12 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (card‘𝐴) = (card‘𝑥)) |
14 | 13 | biantrud 531 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → (∪ 𝐴 = 𝐴 ↔ (∪ 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥)))) |
15 | | unieq 4847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪
𝐴) |
16 | 15 | eqeq1d 2740 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐴 ↔ ∪ 𝐴 = 𝐴)) |
17 | 1 | pwid 4554 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐴 ∈ 𝒫 𝐴 |
18 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐴 ↔ 𝐴 ∈ 𝒫 𝐴)) |
19 | 17, 18 | mpbiri 257 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
20 | 19 | biantrurd 532 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝐴 → (∪ 𝑥 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴))) |
21 | 16, 20 | bitr3d 280 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (∪ 𝐴 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴))) |
22 | 21 | anbi1d 629 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → ((∪ 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))) |
23 | 14, 22 | bitr2d 279 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (((𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)) ↔ ∪ 𝐴 = 𝐴)) |
24 | 1, 23 | spcev 3535 |
. . . . . . . . . . 11
⊢ (∪ 𝐴 =
𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))) |
25 | 11, 24 | syl 17 |
. . . . . . . . . 10
⊢ (Lim
𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))) |
26 | | df-rex 3069 |
. . . . . . . . . . 11
⊢
(∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 =
𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥))) |
27 | | rabid 3304 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴)) |
28 | 27 | anbi1i 623 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))) |
29 | 28 | exbii 1851 |
. . . . . . . . . . 11
⊢
(∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))) |
30 | 26, 29 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 =
𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))) |
31 | 25, 30 | sylibr 233 |
. . . . . . . . 9
⊢ (Lim
𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥)) |
32 | | fvex 6769 |
. . . . . . . . . 10
⊢
(card‘𝐴)
∈ V |
33 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑦 = (card‘𝐴) → (𝑦 = (card‘𝑥) ↔ (card‘𝐴) = (card‘𝑥))) |
34 | 33 | rexbidv 3225 |
. . . . . . . . . 10
⊢ (𝑦 = (card‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥))) |
35 | 32, 34 | spcev 3535 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 =
𝐴} (card‘𝐴) = (card‘𝑥) → ∃𝑦∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)) |
36 | 31, 35 | syl 17 |
. . . . . . . 8
⊢ (Lim
𝐴 → ∃𝑦∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)) |
37 | | abn0 4311 |
. . . . . . . 8
⊢ ({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅ ↔ ∃𝑦∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)) |
38 | 36, 37 | sylibr 233 |
. . . . . . 7
⊢ (Lim
𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅) |
39 | | onint 7617 |
. . . . . . 7
⊢ (({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅) → ∩ {𝑦
∣ ∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 =
𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)}) |
40 | 9, 38, 39 | sylancr 586 |
. . . . . 6
⊢ (Lim
𝐴 → ∩ {𝑦
∣ ∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 =
𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)}) |
41 | 4, 40 | eqeltrid 2843 |
. . . . 5
⊢ (Lim
𝐴 → ∩ 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} (card‘𝑥) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)}) |
42 | 2, 41 | eqeltrd 2839 |
. . . 4
⊢ (Lim
𝐴 → (cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)}) |
43 | | fvex 6769 |
. . . . 5
⊢
(cf‘𝐴) ∈
V |
44 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑦 = (cf‘𝐴) → (𝑦 = (card‘𝑥) ↔ (cf‘𝐴) = (card‘𝑥))) |
45 | 44 | rexbidv 3225 |
. . . . 5
⊢ (𝑦 = (cf‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))) |
46 | 43, 45 | elab 3602 |
. . . 4
⊢
((cf‘𝐴) ∈
{𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥)) |
47 | 42, 46 | sylib 217 |
. . 3
⊢ (Lim
𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥)) |
48 | | df-rex 3069 |
. . 3
⊢
(∃𝑥 ∈
{𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 =
𝐴} (cf‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) |
49 | 47, 48 | sylib 217 |
. 2
⊢ (Lim
𝐴 → ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) |
50 | | simprl 767 |
. . . . . . . 8
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴}) |
51 | 50, 27 | sylib 217 |
. . . . . . 7
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴)) |
52 | 51 | simpld 494 |
. . . . . 6
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ 𝒫 𝐴) |
53 | 52 | elpwid 4541 |
. . . . 5
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ⊆ 𝐴) |
54 | | simpl 482 |
. . . . . . 7
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → Lim 𝐴) |
55 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
56 | | limord 6310 |
. . . . . . . . . . . 12
⊢ (Lim
𝐴 → Ord 𝐴) |
57 | | ordsson 7610 |
. . . . . . . . . . . 12
⊢ (Ord
𝐴 → 𝐴 ⊆ On) |
58 | 56, 57 | syl 17 |
. . . . . . . . . . 11
⊢ (Lim
𝐴 → 𝐴 ⊆ On) |
59 | | sstr 3925 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝐴 ⊆ On) → 𝑥 ⊆ On) |
60 | 58, 59 | sylan2 592 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐴 ∧ Lim 𝐴) → 𝑥 ⊆ On) |
61 | | onssnum 9727 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ V ∧ 𝑥 ⊆ On) → 𝑥 ∈ dom
card) |
62 | 55, 60, 61 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝑥 ⊆ 𝐴 ∧ Lim 𝐴) → 𝑥 ∈ dom card) |
63 | | cardid2 9642 |
. . . . . . . . 9
⊢ (𝑥 ∈ dom card →
(card‘𝑥) ≈
𝑥) |
64 | 62, 63 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ Lim 𝐴) → (card‘𝑥) ≈ 𝑥) |
65 | 64 | ensymd 8746 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ Lim 𝐴) → 𝑥 ≈ (card‘𝑥)) |
66 | 53, 54, 65 | syl2anc 583 |
. . . . . 6
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (card‘𝑥)) |
67 | | simprr 769 |
. . . . . 6
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (cf‘𝐴) = (card‘𝑥)) |
68 | 66, 67 | breqtrrd 5098 |
. . . . 5
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (cf‘𝐴)) |
69 | 51 | simprd 495 |
. . . . 5
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → ∪ 𝑥 = 𝐴) |
70 | 53, 68, 69 | 3jca 1126 |
. . . 4
⊢ ((Lim
𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (cf‘𝐴) ∧ ∪ 𝑥 = 𝐴)) |
71 | 70 | ex 412 |
. . 3
⊢ (Lim
𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (cf‘𝐴) ∧ ∪ 𝑥 = 𝐴))) |
72 | 71 | eximdv 1921 |
. 2
⊢ (Lim
𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (cf‘𝐴) ∧ ∪ 𝑥 = 𝐴))) |
73 | 49, 72 | mpd 15 |
1
⊢ (Lim
𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ (cf‘𝐴) ∧ ∪ 𝑥 = 𝐴)) |