MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfss Structured version   Visualization version   GIF version

Theorem cfss 10257
Description: There is a cofinal subset of 𝐴 of cardinality (cfβ€˜π΄). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfss.1 𝐴 ∈ V
Assertion
Ref Expression
cfss (Lim 𝐴 β†’ βˆƒπ‘₯(π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰ˆ (cfβ€˜π΄) ∧ βˆͺ π‘₯ = 𝐴))
Distinct variable group:   π‘₯,𝐴

Proof of Theorem cfss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cfss.1 . . . . . 6 𝐴 ∈ V
21cflim3 10254 . . . . 5 (Lim 𝐴 β†’ (cfβ€˜π΄) = ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯))
3 fvex 6902 . . . . . . 7 (cardβ€˜π‘₯) ∈ V
43dfiin2 5037 . . . . . 6 ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) = ∩ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)}
5 cardon 9936 . . . . . . . . . 10 (cardβ€˜π‘₯) ∈ On
6 eleq1 2822 . . . . . . . . . 10 (𝑦 = (cardβ€˜π‘₯) β†’ (𝑦 ∈ On ↔ (cardβ€˜π‘₯) ∈ On))
75, 6mpbiri 258 . . . . . . . . 9 (𝑦 = (cardβ€˜π‘₯) β†’ 𝑦 ∈ On)
87rexlimivw 3152 . . . . . . . 8 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯) β†’ 𝑦 ∈ On)
98abssi 4067 . . . . . . 7 {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)} βŠ† On
10 limuni 6423 . . . . . . . . . . . 12 (Lim 𝐴 β†’ 𝐴 = βˆͺ 𝐴)
1110eqcomd 2739 . . . . . . . . . . 11 (Lim 𝐴 β†’ βˆͺ 𝐴 = 𝐴)
12 fveq2 6889 . . . . . . . . . . . . . . 15 (π‘₯ = 𝐴 β†’ (cardβ€˜π‘₯) = (cardβ€˜π΄))
1312eqcomd 2739 . . . . . . . . . . . . . 14 (π‘₯ = 𝐴 β†’ (cardβ€˜π΄) = (cardβ€˜π‘₯))
1413biantrud 533 . . . . . . . . . . . . 13 (π‘₯ = 𝐴 β†’ (βˆͺ 𝐴 = 𝐴 ↔ (βˆͺ 𝐴 = 𝐴 ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯))))
15 unieq 4919 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝐴 β†’ βˆͺ π‘₯ = βˆͺ 𝐴)
1615eqeq1d 2735 . . . . . . . . . . . . . . 15 (π‘₯ = 𝐴 β†’ (βˆͺ π‘₯ = 𝐴 ↔ βˆͺ 𝐴 = 𝐴))
171pwid 4624 . . . . . . . . . . . . . . . . 17 𝐴 ∈ 𝒫 𝐴
18 eleq1 2822 . . . . . . . . . . . . . . . . 17 (π‘₯ = 𝐴 β†’ (π‘₯ ∈ 𝒫 𝐴 ↔ 𝐴 ∈ 𝒫 𝐴))
1917, 18mpbiri 258 . . . . . . . . . . . . . . . 16 (π‘₯ = 𝐴 β†’ π‘₯ ∈ 𝒫 𝐴)
2019biantrurd 534 . . . . . . . . . . . . . . 15 (π‘₯ = 𝐴 β†’ (βˆͺ π‘₯ = 𝐴 ↔ (π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴)))
2116, 20bitr3d 281 . . . . . . . . . . . . . 14 (π‘₯ = 𝐴 β†’ (βˆͺ 𝐴 = 𝐴 ↔ (π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴)))
2221anbi1d 631 . . . . . . . . . . . . 13 (π‘₯ = 𝐴 β†’ ((βˆͺ 𝐴 = 𝐴 ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)) ↔ ((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯))))
2314, 22bitr2d 280 . . . . . . . . . . . 12 (π‘₯ = 𝐴 β†’ (((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)) ↔ βˆͺ 𝐴 = 𝐴))
241, 23spcev 3597 . . . . . . . . . . 11 (βˆͺ 𝐴 = 𝐴 β†’ βˆƒπ‘₯((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)))
2511, 24syl 17 . . . . . . . . . 10 (Lim 𝐴 β†’ βˆƒπ‘₯((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)))
26 df-rex 3072 . . . . . . . . . . 11 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π΄) = (cardβ€˜π‘₯) ↔ βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)))
27 rabid 3453 . . . . . . . . . . . . 13 (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ↔ (π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴))
2827anbi1i 625 . . . . . . . . . . . 12 ((π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)) ↔ ((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)))
2928exbii 1851 . . . . . . . . . . 11 (βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)) ↔ βˆƒπ‘₯((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)))
3026, 29bitri 275 . . . . . . . . . 10 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π΄) = (cardβ€˜π‘₯) ↔ βˆƒπ‘₯((π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴) ∧ (cardβ€˜π΄) = (cardβ€˜π‘₯)))
3125, 30sylibr 233 . . . . . . . . 9 (Lim 𝐴 β†’ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π΄) = (cardβ€˜π‘₯))
32 fvex 6902 . . . . . . . . . 10 (cardβ€˜π΄) ∈ V
33 eqeq1 2737 . . . . . . . . . . 11 (𝑦 = (cardβ€˜π΄) β†’ (𝑦 = (cardβ€˜π‘₯) ↔ (cardβ€˜π΄) = (cardβ€˜π‘₯)))
3433rexbidv 3179 . . . . . . . . . 10 (𝑦 = (cardβ€˜π΄) β†’ (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯) ↔ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π΄) = (cardβ€˜π‘₯)))
3532, 34spcev 3597 . . . . . . . . 9 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π΄) = (cardβ€˜π‘₯) β†’ βˆƒπ‘¦βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯))
3631, 35syl 17 . . . . . . . 8 (Lim 𝐴 β†’ βˆƒπ‘¦βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯))
37 abn0 4380 . . . . . . . 8 ({𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)} β‰  βˆ… ↔ βˆƒπ‘¦βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯))
3836, 37sylibr 233 . . . . . . 7 (Lim 𝐴 β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)} β‰  βˆ…)
39 onint 7775 . . . . . . 7 (({𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)} βŠ† On ∧ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)} β‰  βˆ…) β†’ ∩ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)} ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)})
409, 38, 39sylancr 588 . . . . . 6 (Lim 𝐴 β†’ ∩ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)} ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)})
414, 40eqeltrid 2838 . . . . 5 (Lim 𝐴 β†’ ∩ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cardβ€˜π‘₯) ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)})
422, 41eqeltrd 2834 . . . 4 (Lim 𝐴 β†’ (cfβ€˜π΄) ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)})
43 fvex 6902 . . . . 5 (cfβ€˜π΄) ∈ V
44 eqeq1 2737 . . . . . 6 (𝑦 = (cfβ€˜π΄) β†’ (𝑦 = (cardβ€˜π‘₯) ↔ (cfβ€˜π΄) = (cardβ€˜π‘₯)))
4544rexbidv 3179 . . . . 5 (𝑦 = (cfβ€˜π΄) β†’ (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯) ↔ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cfβ€˜π΄) = (cardβ€˜π‘₯)))
4643, 45elab 3668 . . . 4 ((cfβ€˜π΄) ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴}𝑦 = (cardβ€˜π‘₯)} ↔ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cfβ€˜π΄) = (cardβ€˜π‘₯))
4742, 46sylib 217 . . 3 (Lim 𝐴 β†’ βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cfβ€˜π΄) = (cardβ€˜π‘₯))
48 df-rex 3072 . . 3 (βˆƒπ‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} (cfβ€˜π΄) = (cardβ€˜π‘₯) ↔ βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯)))
4947, 48sylib 217 . 2 (Lim 𝐴 β†’ βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯)))
50 simprl 770 . . . . . . . 8 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴})
5150, 27sylib 217 . . . . . . 7 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ (π‘₯ ∈ 𝒫 𝐴 ∧ βˆͺ π‘₯ = 𝐴))
5251simpld 496 . . . . . 6 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ π‘₯ ∈ 𝒫 𝐴)
5352elpwid 4611 . . . . 5 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ π‘₯ βŠ† 𝐴)
54 simpl 484 . . . . . . 7 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ Lim 𝐴)
55 vex 3479 . . . . . . . . . 10 π‘₯ ∈ V
56 limord 6422 . . . . . . . . . . . 12 (Lim 𝐴 β†’ Ord 𝐴)
57 ordsson 7767 . . . . . . . . . . . 12 (Ord 𝐴 β†’ 𝐴 βŠ† On)
5856, 57syl 17 . . . . . . . . . . 11 (Lim 𝐴 β†’ 𝐴 βŠ† On)
59 sstr 3990 . . . . . . . . . . 11 ((π‘₯ βŠ† 𝐴 ∧ 𝐴 βŠ† On) β†’ π‘₯ βŠ† On)
6058, 59sylan2 594 . . . . . . . . . 10 ((π‘₯ βŠ† 𝐴 ∧ Lim 𝐴) β†’ π‘₯ βŠ† On)
61 onssnum 10032 . . . . . . . . . 10 ((π‘₯ ∈ V ∧ π‘₯ βŠ† On) β†’ π‘₯ ∈ dom card)
6255, 60, 61sylancr 588 . . . . . . . . 9 ((π‘₯ βŠ† 𝐴 ∧ Lim 𝐴) β†’ π‘₯ ∈ dom card)
63 cardid2 9945 . . . . . . . . 9 (π‘₯ ∈ dom card β†’ (cardβ€˜π‘₯) β‰ˆ π‘₯)
6462, 63syl 17 . . . . . . . 8 ((π‘₯ βŠ† 𝐴 ∧ Lim 𝐴) β†’ (cardβ€˜π‘₯) β‰ˆ π‘₯)
6564ensymd 8998 . . . . . . 7 ((π‘₯ βŠ† 𝐴 ∧ Lim 𝐴) β†’ π‘₯ β‰ˆ (cardβ€˜π‘₯))
6653, 54, 65syl2anc 585 . . . . . 6 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ π‘₯ β‰ˆ (cardβ€˜π‘₯))
67 simprr 772 . . . . . 6 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ (cfβ€˜π΄) = (cardβ€˜π‘₯))
6866, 67breqtrrd 5176 . . . . 5 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ π‘₯ β‰ˆ (cfβ€˜π΄))
6951simprd 497 . . . . 5 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ βˆͺ π‘₯ = 𝐴)
7053, 68, 693jca 1129 . . . 4 ((Lim 𝐴 ∧ (π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯))) β†’ (π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰ˆ (cfβ€˜π΄) ∧ βˆͺ π‘₯ = 𝐴))
7170ex 414 . . 3 (Lim 𝐴 β†’ ((π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯)) β†’ (π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰ˆ (cfβ€˜π΄) ∧ βˆͺ π‘₯ = 𝐴)))
7271eximdv 1921 . 2 (Lim 𝐴 β†’ (βˆƒπ‘₯(π‘₯ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ βˆͺ π‘₯ = 𝐴} ∧ (cfβ€˜π΄) = (cardβ€˜π‘₯)) β†’ βˆƒπ‘₯(π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰ˆ (cfβ€˜π΄) ∧ βˆͺ π‘₯ = 𝐴)))
7349, 72mpd 15 1 (Lim 𝐴 β†’ βˆƒπ‘₯(π‘₯ βŠ† 𝐴 ∧ π‘₯ β‰ˆ (cfβ€˜π΄) ∧ βˆͺ π‘₯ = 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  {cab 2710   β‰  wne 2941  βˆƒwrex 3071  {crab 3433  Vcvv 3475   βŠ† wss 3948  βˆ…c0 4322  π’« cpw 4602  βˆͺ cuni 4908  βˆ© cint 4950  βˆ© ciin 4998   class class class wbr 5148  dom cdm 5676  Ord word 6361  Oncon0 6362  Lim wlim 6363  β€˜cfv 6541   β‰ˆ cen 8933  cardccrd 9927  cfccf 9929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-er 8700  df-en 8937  df-dom 8938  df-card 9931  df-cf 9933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator