MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfss Structured version   Visualization version   GIF version

Theorem cfss 10163
Description: There is a cofinal subset of 𝐴 of cardinality (cf‘𝐴). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfss.1 𝐴 ∈ V
Assertion
Ref Expression
cfss (Lim 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cfss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cfss.1 . . . . . 6 𝐴 ∈ V
21cflim3 10160 . . . . 5 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
3 fvex 6841 . . . . . . 7 (card‘𝑥) ∈ V
43dfiin2 4983 . . . . . 6 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)}
5 cardon 9844 . . . . . . . . . 10 (card‘𝑥) ∈ On
6 eleq1 2821 . . . . . . . . . 10 (𝑦 = (card‘𝑥) → (𝑦 ∈ On ↔ (card‘𝑥) ∈ On))
75, 6mpbiri 258 . . . . . . . . 9 (𝑦 = (card‘𝑥) → 𝑦 ∈ On)
87rexlimivw 3130 . . . . . . . 8 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) → 𝑦 ∈ On)
98abssi 4017 . . . . . . 7 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On
10 limuni 6373 . . . . . . . . . . . 12 (Lim 𝐴𝐴 = 𝐴)
1110eqcomd 2739 . . . . . . . . . . 11 (Lim 𝐴 𝐴 = 𝐴)
12 fveq2 6828 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴))
1312eqcomd 2739 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (card‘𝐴) = (card‘𝑥))
1413biantrud 531 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ( 𝐴 = 𝐴 ↔ ( 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥))))
15 unieq 4869 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 𝑥 = 𝐴)
1615eqeq1d 2735 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ( 𝑥 = 𝐴 𝐴 = 𝐴))
171pwid 4571 . . . . . . . . . . . . . . . . 17 𝐴 ∈ 𝒫 𝐴
18 eleq1 2821 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐴𝐴 ∈ 𝒫 𝐴))
1917, 18mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴𝑥 ∈ 𝒫 𝐴)
2019biantrurd 532 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴)))
2116, 20bitr3d 281 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → ( 𝐴 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴)))
2221anbi1d 631 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (( 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))))
2314, 22bitr2d 280 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)) ↔ 𝐴 = 𝐴))
241, 23spcev 3557 . . . . . . . . . . 11 ( 𝐴 = 𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
2511, 24syl 17 . . . . . . . . . 10 (Lim 𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
26 df-rex 3058 . . . . . . . . . . 11 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)))
27 rabid 3417 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
2827anbi1i 624 . . . . . . . . . . . 12 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
2928exbii 1849 . . . . . . . . . . 11 (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
3026, 29bitri 275 . . . . . . . . . 10 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
3125, 30sylibr 234 . . . . . . . . 9 (Lim 𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥))
32 fvex 6841 . . . . . . . . . 10 (card‘𝐴) ∈ V
33 eqeq1 2737 . . . . . . . . . . 11 (𝑦 = (card‘𝐴) → (𝑦 = (card‘𝑥) ↔ (card‘𝐴) = (card‘𝑥)))
3433rexbidv 3157 . . . . . . . . . 10 (𝑦 = (card‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥)))
3532, 34spcev 3557 . . . . . . . . 9 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) → ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
3631, 35syl 17 . . . . . . . 8 (Lim 𝐴 → ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
37 abn0 4334 . . . . . . . 8 ({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
3836, 37sylibr 234 . . . . . . 7 (Lim 𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅)
39 onint 7729 . . . . . . 7 (({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
409, 38, 39sylancr 587 . . . . . 6 (Lim 𝐴 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
414, 40eqeltrid 2837 . . . . 5 (Lim 𝐴 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
422, 41eqeltrd 2833 . . . 4 (Lim 𝐴 → (cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
43 fvex 6841 . . . . 5 (cf‘𝐴) ∈ V
44 eqeq1 2737 . . . . . 6 (𝑦 = (cf‘𝐴) → (𝑦 = (card‘𝑥) ↔ (cf‘𝐴) = (card‘𝑥)))
4544rexbidv 3157 . . . . 5 (𝑦 = (cf‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥)))
4643, 45elab 3631 . . . 4 ((cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))
4742, 46sylib 218 . . 3 (Lim 𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))
48 df-rex 3058 . . 3 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)))
4947, 48sylib 218 . 2 (Lim 𝐴 → ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)))
50 simprl 770 . . . . . . . 8 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴})
5150, 27sylib 218 . . . . . . 7 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
5251simpld 494 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ 𝒫 𝐴)
5352elpwid 4558 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥𝐴)
54 simpl 482 . . . . . . 7 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → Lim 𝐴)
55 vex 3441 . . . . . . . . . 10 𝑥 ∈ V
56 limord 6372 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
57 ordsson 7722 . . . . . . . . . . . 12 (Ord 𝐴𝐴 ⊆ On)
5856, 57syl 17 . . . . . . . . . . 11 (Lim 𝐴𝐴 ⊆ On)
59 sstr 3939 . . . . . . . . . . 11 ((𝑥𝐴𝐴 ⊆ On) → 𝑥 ⊆ On)
6058, 59sylan2 593 . . . . . . . . . 10 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ⊆ On)
61 onssnum 9938 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥 ⊆ On) → 𝑥 ∈ dom card)
6255, 60, 61sylancr 587 . . . . . . . . 9 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ∈ dom card)
63 cardid2 9853 . . . . . . . . 9 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
6462, 63syl 17 . . . . . . . 8 ((𝑥𝐴 ∧ Lim 𝐴) → (card‘𝑥) ≈ 𝑥)
6564ensymd 8934 . . . . . . 7 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ≈ (card‘𝑥))
6653, 54, 65syl2anc 584 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (card‘𝑥))
67 simprr 772 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (cf‘𝐴) = (card‘𝑥))
6866, 67breqtrrd 5121 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (cf‘𝐴))
6951simprd 495 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 = 𝐴)
7053, 68, 693jca 1128 . . . 4 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
7170ex 412 . . 3 (Lim 𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → (𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴)))
7271eximdv 1918 . 2 (Lim 𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴)))
7349, 72mpd 15 1 (Lim 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wne 2929  wrex 3057  {crab 3396  Vcvv 3437  wss 3898  c0 4282  𝒫 cpw 4549   cuni 4858   cint 4897   ciin 4942   class class class wbr 5093  dom cdm 5619  Ord word 6310  Oncon0 6311  Lim wlim 6312  cfv 6486  cen 8872  cardccrd 9835  cfccf 9837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-er 8628  df-en 8876  df-dom 8877  df-card 9839  df-cf 9841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator