MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfss Structured version   Visualization version   GIF version

Theorem cfss 9685
Description: There is a cofinal subset of 𝐴 of cardinality (cf‘𝐴). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfss.1 𝐴 ∈ V
Assertion
Ref Expression
cfss (Lim 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cfss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cfss.1 . . . . . 6 𝐴 ∈ V
21cflim3 9682 . . . . 5 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
3 fvex 6674 . . . . . . 7 (card‘𝑥) ∈ V
43dfiin2 4945 . . . . . 6 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)}
5 cardon 9370 . . . . . . . . . 10 (card‘𝑥) ∈ On
6 eleq1 2903 . . . . . . . . . 10 (𝑦 = (card‘𝑥) → (𝑦 ∈ On ↔ (card‘𝑥) ∈ On))
75, 6mpbiri 261 . . . . . . . . 9 (𝑦 = (card‘𝑥) → 𝑦 ∈ On)
87rexlimivw 3274 . . . . . . . 8 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) → 𝑦 ∈ On)
98abssi 4032 . . . . . . 7 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On
10 limuni 6238 . . . . . . . . . . . 12 (Lim 𝐴𝐴 = 𝐴)
1110eqcomd 2830 . . . . . . . . . . 11 (Lim 𝐴 𝐴 = 𝐴)
12 fveq2 6661 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴))
1312eqcomd 2830 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (card‘𝐴) = (card‘𝑥))
1413biantrud 535 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ( 𝐴 = 𝐴 ↔ ( 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥))))
15 unieq 4835 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 𝑥 = 𝐴)
1615eqeq1d 2826 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ( 𝑥 = 𝐴 𝐴 = 𝐴))
171pwid 4546 . . . . . . . . . . . . . . . . 17 𝐴 ∈ 𝒫 𝐴
18 eleq1 2903 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐴𝐴 ∈ 𝒫 𝐴))
1917, 18mpbiri 261 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴𝑥 ∈ 𝒫 𝐴)
2019biantrurd 536 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴)))
2116, 20bitr3d 284 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → ( 𝐴 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴)))
2221anbi1d 632 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (( 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))))
2314, 22bitr2d 283 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)) ↔ 𝐴 = 𝐴))
241, 23spcev 3593 . . . . . . . . . . 11 ( 𝐴 = 𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
2511, 24syl 17 . . . . . . . . . 10 (Lim 𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
26 df-rex 3139 . . . . . . . . . . 11 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)))
27 rabid 3369 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
2827anbi1i 626 . . . . . . . . . . . 12 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
2928exbii 1849 . . . . . . . . . . 11 (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
3026, 29bitri 278 . . . . . . . . . 10 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
3125, 30sylibr 237 . . . . . . . . 9 (Lim 𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥))
32 fvex 6674 . . . . . . . . . 10 (card‘𝐴) ∈ V
33 eqeq1 2828 . . . . . . . . . . 11 (𝑦 = (card‘𝐴) → (𝑦 = (card‘𝑥) ↔ (card‘𝐴) = (card‘𝑥)))
3433rexbidv 3289 . . . . . . . . . 10 (𝑦 = (card‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥)))
3532, 34spcev 3593 . . . . . . . . 9 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) → ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
3631, 35syl 17 . . . . . . . 8 (Lim 𝐴 → ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
37 abn0 4319 . . . . . . . 8 ({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
3836, 37sylibr 237 . . . . . . 7 (Lim 𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅)
39 onint 7504 . . . . . . 7 (({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
409, 38, 39sylancr 590 . . . . . 6 (Lim 𝐴 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
414, 40eqeltrid 2920 . . . . 5 (Lim 𝐴 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
422, 41eqeltrd 2916 . . . 4 (Lim 𝐴 → (cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
43 fvex 6674 . . . . 5 (cf‘𝐴) ∈ V
44 eqeq1 2828 . . . . . 6 (𝑦 = (cf‘𝐴) → (𝑦 = (card‘𝑥) ↔ (cf‘𝐴) = (card‘𝑥)))
4544rexbidv 3289 . . . . 5 (𝑦 = (cf‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥)))
4643, 45elab 3653 . . . 4 ((cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))
4742, 46sylib 221 . . 3 (Lim 𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))
48 df-rex 3139 . . 3 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)))
4947, 48sylib 221 . 2 (Lim 𝐴 → ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)))
50 simprl 770 . . . . . . . 8 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴})
5150, 27sylib 221 . . . . . . 7 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
5251simpld 498 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ 𝒫 𝐴)
5352elpwid 4533 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥𝐴)
54 simpl 486 . . . . . . 7 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → Lim 𝐴)
55 vex 3483 . . . . . . . . . 10 𝑥 ∈ V
56 limord 6237 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
57 ordsson 7498 . . . . . . . . . . . 12 (Ord 𝐴𝐴 ⊆ On)
5856, 57syl 17 . . . . . . . . . . 11 (Lim 𝐴𝐴 ⊆ On)
59 sstr 3961 . . . . . . . . . . 11 ((𝑥𝐴𝐴 ⊆ On) → 𝑥 ⊆ On)
6058, 59sylan2 595 . . . . . . . . . 10 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ⊆ On)
61 onssnum 9464 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥 ⊆ On) → 𝑥 ∈ dom card)
6255, 60, 61sylancr 590 . . . . . . . . 9 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ∈ dom card)
63 cardid2 9379 . . . . . . . . 9 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
6462, 63syl 17 . . . . . . . 8 ((𝑥𝐴 ∧ Lim 𝐴) → (card‘𝑥) ≈ 𝑥)
6564ensymd 8556 . . . . . . 7 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ≈ (card‘𝑥))
6653, 54, 65syl2anc 587 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (card‘𝑥))
67 simprr 772 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (cf‘𝐴) = (card‘𝑥))
6866, 67breqtrrd 5080 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (cf‘𝐴))
6951simprd 499 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 = 𝐴)
7053, 68, 693jca 1125 . . . 4 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
7170ex 416 . . 3 (Lim 𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → (𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴)))
7271eximdv 1919 . 2 (Lim 𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴)))
7349, 72mpd 15 1 (Lim 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2115  {cab 2802  wne 3014  wrex 3134  {crab 3137  Vcvv 3480  wss 3919  c0 4276  𝒫 cpw 4522   cuni 4824   cint 4862   ciin 4906   class class class wbr 5052  dom cdm 5542  Ord word 6177  Oncon0 6178  Lim wlim 6179  cfv 6343  cen 8502  cardccrd 9361  cfccf 9363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-wrecs 7943  df-recs 8004  df-er 8285  df-en 8506  df-dom 8507  df-card 9365  df-cf 9367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator