MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfss Structured version   Visualization version   GIF version

Theorem cfss 10287
Description: There is a cofinal subset of 𝐴 of cardinality (cf‘𝐴). (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfss.1 𝐴 ∈ V
Assertion
Ref Expression
cfss (Lim 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cfss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cfss.1 . . . . . 6 𝐴 ∈ V
21cflim3 10284 . . . . 5 (Lim 𝐴 → (cf‘𝐴) = 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥))
3 fvex 6899 . . . . . . 7 (card‘𝑥) ∈ V
43dfiin2 5014 . . . . . 6 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) = {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)}
5 cardon 9966 . . . . . . . . . 10 (card‘𝑥) ∈ On
6 eleq1 2821 . . . . . . . . . 10 (𝑦 = (card‘𝑥) → (𝑦 ∈ On ↔ (card‘𝑥) ∈ On))
75, 6mpbiri 258 . . . . . . . . 9 (𝑦 = (card‘𝑥) → 𝑦 ∈ On)
87rexlimivw 3138 . . . . . . . 8 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) → 𝑦 ∈ On)
98abssi 4050 . . . . . . 7 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On
10 limuni 6425 . . . . . . . . . . . 12 (Lim 𝐴𝐴 = 𝐴)
1110eqcomd 2740 . . . . . . . . . . 11 (Lim 𝐴 𝐴 = 𝐴)
12 fveq2 6886 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (card‘𝑥) = (card‘𝐴))
1312eqcomd 2740 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → (card‘𝐴) = (card‘𝑥))
1413biantrud 531 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → ( 𝐴 = 𝐴 ↔ ( 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥))))
15 unieq 4898 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 𝑥 = 𝐴)
1615eqeq1d 2736 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ( 𝑥 = 𝐴 𝐴 = 𝐴))
171pwid 4602 . . . . . . . . . . . . . . . . 17 𝐴 ∈ 𝒫 𝐴
18 eleq1 2821 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (𝑥 ∈ 𝒫 𝐴𝐴 ∈ 𝒫 𝐴))
1917, 18mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴𝑥 ∈ 𝒫 𝐴)
2019biantrurd 532 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴)))
2116, 20bitr3d 281 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 → ( 𝐴 = 𝐴 ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴)))
2221anbi1d 631 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (( 𝐴 = 𝐴 ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥))))
2314, 22bitr2d 280 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)) ↔ 𝐴 = 𝐴))
241, 23spcev 3589 . . . . . . . . . . 11 ( 𝐴 = 𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
2511, 24syl 17 . . . . . . . . . 10 (Lim 𝐴 → ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
26 df-rex 3060 . . . . . . . . . . 11 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)))
27 rabid 3441 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ↔ (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
2827anbi1i 624 . . . . . . . . . . . 12 ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
2928exbii 1847 . . . . . . . . . . 11 (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (card‘𝐴) = (card‘𝑥)) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
3026, 29bitri 275 . . . . . . . . . 10 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) ↔ ∃𝑥((𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴) ∧ (card‘𝐴) = (card‘𝑥)))
3125, 30sylibr 234 . . . . . . . . 9 (Lim 𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥))
32 fvex 6899 . . . . . . . . . 10 (card‘𝐴) ∈ V
33 eqeq1 2738 . . . . . . . . . . 11 (𝑦 = (card‘𝐴) → (𝑦 = (card‘𝑥) ↔ (card‘𝐴) = (card‘𝑥)))
3433rexbidv 3166 . . . . . . . . . 10 (𝑦 = (card‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥)))
3532, 34spcev 3589 . . . . . . . . 9 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝐴) = (card‘𝑥) → ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
3631, 35syl 17 . . . . . . . 8 (Lim 𝐴 → ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
37 abn0 4365 . . . . . . . 8 ({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅ ↔ ∃𝑦𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥))
3836, 37sylibr 234 . . . . . . 7 (Lim 𝐴 → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅)
39 onint 7792 . . . . . . 7 (({𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ⊆ On ∧ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ≠ ∅) → {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
409, 38, 39sylancr 587 . . . . . 6 (Lim 𝐴 {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
414, 40eqeltrid 2837 . . . . 5 (Lim 𝐴 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (card‘𝑥) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
422, 41eqeltrd 2833 . . . 4 (Lim 𝐴 → (cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)})
43 fvex 6899 . . . . 5 (cf‘𝐴) ∈ V
44 eqeq1 2738 . . . . . 6 (𝑦 = (cf‘𝐴) → (𝑦 = (card‘𝑥) ↔ (cf‘𝐴) = (card‘𝑥)))
4544rexbidv 3166 . . . . 5 (𝑦 = (cf‘𝐴) → (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥) ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥)))
4643, 45elab 3662 . . . 4 ((cf‘𝐴) ∈ {𝑦 ∣ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴}𝑦 = (card‘𝑥)} ↔ ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))
4742, 46sylib 218 . . 3 (Lim 𝐴 → ∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥))
48 df-rex 3060 . . 3 (∃𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} (cf‘𝐴) = (card‘𝑥) ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)))
4947, 48sylib 218 . 2 (Lim 𝐴 → ∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)))
50 simprl 770 . . . . . . . 8 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴})
5150, 27sylib 218 . . . . . . 7 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴))
5251simpld 494 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ∈ 𝒫 𝐴)
5352elpwid 4589 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥𝐴)
54 simpl 482 . . . . . . 7 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → Lim 𝐴)
55 vex 3467 . . . . . . . . . 10 𝑥 ∈ V
56 limord 6424 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
57 ordsson 7785 . . . . . . . . . . . 12 (Ord 𝐴𝐴 ⊆ On)
5856, 57syl 17 . . . . . . . . . . 11 (Lim 𝐴𝐴 ⊆ On)
59 sstr 3972 . . . . . . . . . . 11 ((𝑥𝐴𝐴 ⊆ On) → 𝑥 ⊆ On)
6058, 59sylan2 593 . . . . . . . . . 10 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ⊆ On)
61 onssnum 10062 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑥 ⊆ On) → 𝑥 ∈ dom card)
6255, 60, 61sylancr 587 . . . . . . . . 9 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ∈ dom card)
63 cardid2 9975 . . . . . . . . 9 (𝑥 ∈ dom card → (card‘𝑥) ≈ 𝑥)
6462, 63syl 17 . . . . . . . 8 ((𝑥𝐴 ∧ Lim 𝐴) → (card‘𝑥) ≈ 𝑥)
6564ensymd 9027 . . . . . . 7 ((𝑥𝐴 ∧ Lim 𝐴) → 𝑥 ≈ (card‘𝑥))
6653, 54, 65syl2anc 584 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (card‘𝑥))
67 simprr 772 . . . . . 6 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (cf‘𝐴) = (card‘𝑥))
6866, 67breqtrrd 5151 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 ≈ (cf‘𝐴))
6951simprd 495 . . . . 5 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → 𝑥 = 𝐴)
7053, 68, 693jca 1128 . . . 4 ((Lim 𝐴 ∧ (𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥))) → (𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
7170ex 412 . . 3 (Lim 𝐴 → ((𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → (𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴)))
7271eximdv 1916 . 2 (Lim 𝐴 → (∃𝑥(𝑥 ∈ {𝑥 ∈ 𝒫 𝐴 𝑥 = 𝐴} ∧ (cf‘𝐴) = (card‘𝑥)) → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴)))
7349, 72mpd 15 1 (Lim 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≈ (cf‘𝐴) ∧ 𝑥 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  {cab 2712  wne 2931  wrex 3059  {crab 3419  Vcvv 3463  wss 3931  c0 4313  𝒫 cpw 4580   cuni 4887   cint 4926   ciin 4972   class class class wbr 5123  dom cdm 5665  Ord word 6362  Oncon0 6363  Lim wlim 6364  cfv 6541  cen 8964  cardccrd 9957  cfccf 9959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-er 8727  df-en 8968  df-dom 8969  df-card 9961  df-cf 9963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator