Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlimsucg | Structured version Visualization version GIF version |
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nlimsucg | ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6325 | . . . 4 ⊢ (Lim suc 𝐴 → Ord suc 𝐴) | |
2 | ordsuc 7661 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
3 | 1, 2 | sylibr 233 | . . 3 ⊢ (Lim suc 𝐴 → Ord 𝐴) |
4 | limuni 6326 | . . 3 ⊢ (Lim suc 𝐴 → suc 𝐴 = ∪ suc 𝐴) | |
5 | ordunisuc 7679 | . . . . 5 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
6 | 5 | eqeq2d 2749 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 ↔ suc 𝐴 = 𝐴)) |
7 | ordirr 6284 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
8 | eleq2 2827 | . . . . . . 7 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
9 | 8 | notbid 318 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
10 | 7, 9 | syl5ibrcom 246 | . . . . 5 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
11 | sucidg 6344 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
12 | 11 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
13 | 10, 12 | syl6 35 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
14 | 6, 13 | sylbid 239 | . . 3 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
15 | 3, 4, 14 | sylc 65 | . 2 ⊢ (Lim suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
16 | 15 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cuni 4839 Ord word 6265 Lim wlim 6267 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 |
This theorem is referenced by: tz7.44-2 8238 rankxpsuc 9640 dfrdg2 33771 scutbdaybnd2lim 34011 dfrdg4 34253 dfsucon 41130 |
Copyright terms: Public domain | W3C validator |