![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlimsucg | Structured version Visualization version GIF version |
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nlimsucg | ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6425 | . . . 4 ⊢ (Lim suc 𝐴 → Ord suc 𝐴) | |
2 | ordsuc 7801 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
3 | 1, 2 | sylibr 233 | . . 3 ⊢ (Lim suc 𝐴 → Ord 𝐴) |
4 | limuni 6426 | . . 3 ⊢ (Lim suc 𝐴 → suc 𝐴 = ∪ suc 𝐴) | |
5 | ordunisuc 7820 | . . . . 5 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
6 | 5 | eqeq2d 2744 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 ↔ suc 𝐴 = 𝐴)) |
7 | ordirr 6383 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
8 | eleq2 2823 | . . . . . . 7 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
9 | 8 | notbid 318 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
10 | 7, 9 | syl5ibrcom 246 | . . . . 5 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
11 | sucidg 6446 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
12 | 11 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
13 | 10, 12 | syl6 35 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
14 | 6, 13 | sylbid 239 | . . 3 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
15 | 3, 4, 14 | sylc 65 | . 2 ⊢ (Lim suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
16 | 15 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 ∪ cuni 4909 Ord word 6364 Lim wlim 6366 suc csuc 6367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 |
This theorem is referenced by: tz7.44-2 8407 rankxpsuc 9877 scutbdaybnd2lim 27318 dfrdg2 34767 dfrdg4 34923 onov0suclim 42024 dflim5 42079 |
Copyright terms: Public domain | W3C validator |