![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlimsucg | Structured version Visualization version GIF version |
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nlimsucg | ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6000 | . . . 4 ⊢ (Lim suc 𝐴 → Ord suc 𝐴) | |
2 | ordsuc 7248 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
3 | 1, 2 | sylibr 226 | . . 3 ⊢ (Lim suc 𝐴 → Ord 𝐴) |
4 | limuni 6001 | . . 3 ⊢ (Lim suc 𝐴 → suc 𝐴 = ∪ suc 𝐴) | |
5 | ordunisuc 7266 | . . . . 5 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
6 | 5 | eqeq2d 2809 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 ↔ suc 𝐴 = 𝐴)) |
7 | ordirr 5959 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
8 | eleq2 2867 | . . . . . . 7 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
9 | 8 | notbid 310 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
10 | 7, 9 | syl5ibrcom 239 | . . . . 5 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
11 | sucidg 6019 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
12 | 11 | con3i 152 | . . . . 5 ⊢ (¬ 𝐴 ∈ suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
13 | 10, 12 | syl6 35 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
14 | 6, 13 | sylbid 232 | . . 3 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
15 | 3, 4, 14 | sylc 65 | . 2 ⊢ (Lim suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
16 | 15 | con2i 137 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1653 ∈ wcel 2157 ∪ cuni 4628 Ord word 5940 Lim wlim 5942 suc csuc 5943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 |
This theorem is referenced by: tz7.44-2 7742 rankxpsuc 8995 dfrdg2 32213 dfrdg4 32571 |
Copyright terms: Public domain | W3C validator |