MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlimsucg Structured version   Visualization version   GIF version

Theorem nlimsucg 7879
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
nlimsucg (𝐴𝑉 → ¬ Lim suc 𝐴)

Proof of Theorem nlimsucg
StepHypRef Expression
1 limord 6455 . . . 4 (Lim suc 𝐴 → Ord suc 𝐴)
2 ordsuc 7849 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
31, 2sylibr 234 . . 3 (Lim suc 𝐴 → Ord 𝐴)
4 limuni 6456 . . 3 (Lim suc 𝐴 → suc 𝐴 = suc 𝐴)
5 ordunisuc 7868 . . . . 5 (Ord 𝐴 suc 𝐴 = 𝐴)
65eqeq2d 2751 . . . 4 (Ord 𝐴 → (suc 𝐴 = suc 𝐴 ↔ suc 𝐴 = 𝐴))
7 ordirr 6413 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
8 eleq2 2833 . . . . . . 7 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
98notbid 318 . . . . . 6 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
107, 9syl5ibrcom 247 . . . . 5 (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
11 sucidg 6476 . . . . . 6 (𝐴𝑉𝐴 ∈ suc 𝐴)
1211con3i 154 . . . . 5 𝐴 ∈ suc 𝐴 → ¬ 𝐴𝑉)
1310, 12syl6 35 . . . 4 (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴𝑉))
146, 13sylbid 240 . . 3 (Ord 𝐴 → (suc 𝐴 = suc 𝐴 → ¬ 𝐴𝑉))
153, 4, 14sylc 65 . 2 (Lim suc 𝐴 → ¬ 𝐴𝑉)
1615con2i 139 1 (𝐴𝑉 → ¬ Lim suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2108   cuni 4931  Ord word 6394  Lim wlim 6396  suc csuc 6397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401
This theorem is referenced by:  tz7.44-2  8463  rankxpsuc  9951  scutbdaybnd2lim  27880  dfrdg2  35759  dfrdg4  35915  onov0suclim  43236  dflim5  43291
  Copyright terms: Public domain W3C validator