Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nlimsucg | Structured version Visualization version GIF version |
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
nlimsucg | ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord 6310 | . . . 4 ⊢ (Lim suc 𝐴 → Ord suc 𝐴) | |
2 | ordsuc 7636 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
3 | 1, 2 | sylibr 233 | . . 3 ⊢ (Lim suc 𝐴 → Ord 𝐴) |
4 | limuni 6311 | . . 3 ⊢ (Lim suc 𝐴 → suc 𝐴 = ∪ suc 𝐴) | |
5 | ordunisuc 7654 | . . . . 5 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
6 | 5 | eqeq2d 2749 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 ↔ suc 𝐴 = 𝐴)) |
7 | ordirr 6269 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
8 | eleq2 2827 | . . . . . . 7 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
9 | 8 | notbid 317 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
10 | 7, 9 | syl5ibrcom 246 | . . . . 5 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
11 | sucidg 6329 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
12 | 11 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
13 | 10, 12 | syl6 35 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
14 | 6, 13 | sylbid 239 | . . 3 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
15 | 3, 4, 14 | sylc 65 | . 2 ⊢ (Lim suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
16 | 15 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 Ord word 6250 Lim wlim 6252 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 |
This theorem is referenced by: tz7.44-2 8209 rankxpsuc 9571 dfrdg2 33677 scutbdaybnd2lim 33938 dfrdg4 34180 dfsucon 41028 |
Copyright terms: Public domain | W3C validator |