MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlimsucg Structured version   Visualization version   GIF version

Theorem nlimsucg 7664
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
nlimsucg (𝐴𝑉 → ¬ Lim suc 𝐴)

Proof of Theorem nlimsucg
StepHypRef Expression
1 limord 6310 . . . 4 (Lim suc 𝐴 → Ord suc 𝐴)
2 ordsuc 7636 . . . 4 (Ord 𝐴 ↔ Ord suc 𝐴)
31, 2sylibr 233 . . 3 (Lim suc 𝐴 → Ord 𝐴)
4 limuni 6311 . . 3 (Lim suc 𝐴 → suc 𝐴 = suc 𝐴)
5 ordunisuc 7654 . . . . 5 (Ord 𝐴 suc 𝐴 = 𝐴)
65eqeq2d 2749 . . . 4 (Ord 𝐴 → (suc 𝐴 = suc 𝐴 ↔ suc 𝐴 = 𝐴))
7 ordirr 6269 . . . . . 6 (Ord 𝐴 → ¬ 𝐴𝐴)
8 eleq2 2827 . . . . . . 7 (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴𝐴𝐴))
98notbid 317 . . . . . 6 (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴𝐴))
107, 9syl5ibrcom 246 . . . . 5 (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴))
11 sucidg 6329 . . . . . 6 (𝐴𝑉𝐴 ∈ suc 𝐴)
1211con3i 154 . . . . 5 𝐴 ∈ suc 𝐴 → ¬ 𝐴𝑉)
1310, 12syl6 35 . . . 4 (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴𝑉))
146, 13sylbid 239 . . 3 (Ord 𝐴 → (suc 𝐴 = suc 𝐴 → ¬ 𝐴𝑉))
153, 4, 14sylc 65 . 2 (Lim suc 𝐴 → ¬ 𝐴𝑉)
1615con2i 139 1 (𝐴𝑉 → ¬ Lim suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108   cuni 4836  Ord word 6250  Lim wlim 6252  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257
This theorem is referenced by:  tz7.44-2  8209  rankxpsuc  9571  dfrdg2  33677  scutbdaybnd2lim  33938  dfrdg4  34180  dfsucon  41028
  Copyright terms: Public domain W3C validator