| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlimsucg | Structured version Visualization version GIF version | ||
| Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nlimsucg | ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord 6367 | . . . 4 ⊢ (Lim suc 𝐴 → Ord suc 𝐴) | |
| 2 | ordsuc 7744 | . . . 4 ⊢ (Ord 𝐴 ↔ Ord suc 𝐴) | |
| 3 | 1, 2 | sylibr 234 | . . 3 ⊢ (Lim suc 𝐴 → Ord 𝐴) |
| 4 | limuni 6368 | . . 3 ⊢ (Lim suc 𝐴 → suc 𝐴 = ∪ suc 𝐴) | |
| 5 | ordunisuc 7762 | . . . . 5 ⊢ (Ord 𝐴 → ∪ suc 𝐴 = 𝐴) | |
| 6 | 5 | eqeq2d 2742 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 ↔ suc 𝐴 = 𝐴)) |
| 7 | ordirr 6324 | . . . . . 6 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 8 | eleq2 2820 | . . . . . . 7 ⊢ (suc 𝐴 = 𝐴 → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
| 9 | 8 | notbid 318 | . . . . . 6 ⊢ (suc 𝐴 = 𝐴 → (¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴)) |
| 10 | 7, 9 | syl5ibrcom 247 | . . . . 5 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴)) |
| 11 | sucidg 6389 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴) | |
| 12 | 11 | con3i 154 | . . . . 5 ⊢ (¬ 𝐴 ∈ suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
| 13 | 10, 12 | syl6 35 | . . . 4 ⊢ (Ord 𝐴 → (suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
| 14 | 6, 13 | sylbid 240 | . . 3 ⊢ (Ord 𝐴 → (suc 𝐴 = ∪ suc 𝐴 → ¬ 𝐴 ∈ 𝑉)) |
| 15 | 3, 4, 14 | sylc 65 | . 2 ⊢ (Lim suc 𝐴 → ¬ 𝐴 ∈ 𝑉) |
| 16 | 15 | con2i 139 | 1 ⊢ (𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 Ord word 6305 Lim wlim 6307 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 |
| This theorem is referenced by: tz7.44-2 8326 rankxpsuc 9775 scutbdaybnd2lim 27758 dfrdg2 35837 dfrdg4 35995 onov0suclim 43377 dflim5 43432 |
| Copyright terms: Public domain | W3C validator |