MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflm Structured version   Visualization version   GIF version

Theorem cflm 10287
Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of [Enderton] p. 257. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
cflm ((𝐴𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem cflm
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3498 . 2 (𝐴𝐵𝐴 ∈ V)
2 limsuc 7869 . . . . . . . . . . . . . . . . . 18 (Lim 𝐴 → (𝑣𝐴 ↔ suc 𝑣𝐴))
32biimpd 229 . . . . . . . . . . . . . . . . 17 (Lim 𝐴 → (𝑣𝐴 → suc 𝑣𝐴))
4 sseq1 4020 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = suc 𝑣 → (𝑧𝑤 ↔ suc 𝑣𝑤))
54rexbidv 3176 . . . . . . . . . . . . . . . . . . 19 (𝑧 = suc 𝑣 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝑦 suc 𝑣𝑤))
65rspcv 3617 . . . . . . . . . . . . . . . . . 18 (suc 𝑣𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → ∃𝑤𝑦 suc 𝑣𝑤))
7 sucssel 6480 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ V → (suc 𝑣𝑤𝑣𝑤))
87elv 3482 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑣𝑤𝑣𝑤)
98reximi 3081 . . . . . . . . . . . . . . . . . . 19 (∃𝑤𝑦 suc 𝑣𝑤 → ∃𝑤𝑦 𝑣𝑤)
10 eluni2 4915 . . . . . . . . . . . . . . . . . . 19 (𝑣 𝑦 ↔ ∃𝑤𝑦 𝑣𝑤)
119, 10sylibr 234 . . . . . . . . . . . . . . . . . 18 (∃𝑤𝑦 suc 𝑣𝑤𝑣 𝑦)
126, 11syl6com 37 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (suc 𝑣𝐴𝑣 𝑦))
133, 12syl9 77 . . . . . . . . . . . . . . . 16 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (𝑣𝐴𝑣 𝑦)))
1413ralrimdv 3149 . . . . . . . . . . . . . . 15 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → ∀𝑣𝐴 𝑣 𝑦))
15 dfss3 3983 . . . . . . . . . . . . . . 15 (𝐴 𝑦 ↔ ∀𝑣𝐴 𝑣 𝑦)
1614, 15imbitrrdi 252 . . . . . . . . . . . . . 14 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦))
1716adantr 480 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦))
18 uniss 4919 . . . . . . . . . . . . . . 15 (𝑦𝐴 𝑦 𝐴)
19 limuni 6446 . . . . . . . . . . . . . . . 16 (Lim 𝐴𝐴 = 𝐴)
2019sseq2d 4027 . . . . . . . . . . . . . . 15 (Lim 𝐴 → ( 𝑦𝐴 𝑦 𝐴))
2118, 20imbitrrid 246 . . . . . . . . . . . . . 14 (Lim 𝐴 → (𝑦𝐴 𝑦𝐴))
2221imp 406 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴) → 𝑦𝐴)
2317, 22jctird 526 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (𝐴 𝑦 𝑦𝐴)))
24 eqss 4010 . . . . . . . . . . . 12 (𝐴 = 𝑦 ↔ (𝐴 𝑦 𝑦𝐴))
2523, 24imbitrrdi 252 . . . . . . . . . . 11 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 = 𝑦))
2625imdistanda 571 . . . . . . . . . 10 (Lim 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) → (𝑦𝐴𝐴 = 𝑦)))
2726anim2d 612 . . . . . . . . 9 (Lim 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
2827eximdv 1914 . . . . . . . 8 (Lim 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
2928ss2abdv 4075 . . . . . . 7 (Lim 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
30 intss 4973 . . . . . . 7 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3129, 30syl 17 . . . . . 6 (Lim 𝐴 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3231adantl 481 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
33 limelon 6449 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
34 cfval 10284 . . . . . 6 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3533, 34syl 17 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3632, 35sseqtrrd 4036 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴))
37 cfub 10286 . . . . 5 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
38 eqimss 4053 . . . . . . . . . 10 (𝐴 = 𝑦𝐴 𝑦)
3938anim2i 617 . . . . . . . . 9 ((𝑦𝐴𝐴 = 𝑦) → (𝑦𝐴𝐴 𝑦))
4039anim2i 617 . . . . . . . 8 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)))
4140eximi 1831 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)))
4241ss2abi 4076 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
43 intss 4973 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
4442, 43ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))}
4537, 44sstri 4004 . . . 4 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))}
4636, 45jctil 519 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → ((cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴)))
47 eqss 4010 . . 3 ((cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ((cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴)))
4846, 47sylibr 234 . 2 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
491, 48sylan 580 1 ((𝐴𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wex 1775  wcel 2105  {cab 2711  wral 3058  wrex 3067  Vcvv 3477  wss 3962   cuni 4911   cint 4950  Oncon0 6385  Lim wlim 6386  suc csuc 6387  cfv 6562  cardccrd 9972  cfccf 9974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-card 9976  df-cf 9978
This theorem is referenced by:  gruina  10855
  Copyright terms: Public domain W3C validator