MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflm Structured version   Visualization version   GIF version

Theorem cflm 10241
Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of [Enderton] p. 257. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
cflm ((𝐴 ∈ 𝐡 ∧ Lim 𝐴) β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))})
Distinct variable group:   π‘₯,𝑦,𝐴
Allowed substitution hints:   𝐡(π‘₯,𝑦)

Proof of Theorem cflm
Dummy variables 𝑧 𝑀 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3493 . 2 (𝐴 ∈ 𝐡 β†’ 𝐴 ∈ V)
2 limsuc 7833 . . . . . . . . . . . . . . . . . 18 (Lim 𝐴 β†’ (𝑣 ∈ 𝐴 ↔ suc 𝑣 ∈ 𝐴))
32biimpd 228 . . . . . . . . . . . . . . . . 17 (Lim 𝐴 β†’ (𝑣 ∈ 𝐴 β†’ suc 𝑣 ∈ 𝐴))
4 sseq1 4006 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = suc 𝑣 β†’ (𝑧 βŠ† 𝑀 ↔ suc 𝑣 βŠ† 𝑀))
54rexbidv 3179 . . . . . . . . . . . . . . . . . . 19 (𝑧 = suc 𝑣 β†’ (βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 ↔ βˆƒπ‘€ ∈ 𝑦 suc 𝑣 βŠ† 𝑀))
65rspcv 3608 . . . . . . . . . . . . . . . . . 18 (suc 𝑣 ∈ 𝐴 β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 β†’ βˆƒπ‘€ ∈ 𝑦 suc 𝑣 βŠ† 𝑀))
7 sucssel 6456 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ V β†’ (suc 𝑣 βŠ† 𝑀 β†’ 𝑣 ∈ 𝑀))
87elv 3481 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑣 βŠ† 𝑀 β†’ 𝑣 ∈ 𝑀)
98reximi 3085 . . . . . . . . . . . . . . . . . . 19 (βˆƒπ‘€ ∈ 𝑦 suc 𝑣 βŠ† 𝑀 β†’ βˆƒπ‘€ ∈ 𝑦 𝑣 ∈ 𝑀)
10 eluni2 4911 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ βˆͺ 𝑦 ↔ βˆƒπ‘€ ∈ 𝑦 𝑣 ∈ 𝑀)
119, 10sylibr 233 . . . . . . . . . . . . . . . . . 18 (βˆƒπ‘€ ∈ 𝑦 suc 𝑣 βŠ† 𝑀 β†’ 𝑣 ∈ βˆͺ 𝑦)
126, 11syl6com 37 . . . . . . . . . . . . . . . . 17 (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 β†’ (suc 𝑣 ∈ 𝐴 β†’ 𝑣 ∈ βˆͺ 𝑦))
133, 12syl9 77 . . . . . . . . . . . . . . . 16 (Lim 𝐴 β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 β†’ (𝑣 ∈ 𝐴 β†’ 𝑣 ∈ βˆͺ 𝑦)))
1413ralrimdv 3153 . . . . . . . . . . . . . . 15 (Lim 𝐴 β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 β†’ βˆ€π‘£ ∈ 𝐴 𝑣 ∈ βˆͺ 𝑦))
15 dfss3 3969 . . . . . . . . . . . . . . 15 (𝐴 βŠ† βˆͺ 𝑦 ↔ βˆ€π‘£ ∈ 𝐴 𝑣 ∈ βˆͺ 𝑦)
1614, 15syl6ibr 252 . . . . . . . . . . . . . 14 (Lim 𝐴 β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 β†’ 𝐴 βŠ† βˆͺ 𝑦))
1716adantr 482 . . . . . . . . . . . . 13 ((Lim 𝐴 ∧ 𝑦 βŠ† 𝐴) β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 β†’ 𝐴 βŠ† βˆͺ 𝑦))
18 uniss 4915 . . . . . . . . . . . . . . 15 (𝑦 βŠ† 𝐴 β†’ βˆͺ 𝑦 βŠ† βˆͺ 𝐴)
19 limuni 6422 . . . . . . . . . . . . . . . 16 (Lim 𝐴 β†’ 𝐴 = βˆͺ 𝐴)
2019sseq2d 4013 . . . . . . . . . . . . . . 15 (Lim 𝐴 β†’ (βˆͺ 𝑦 βŠ† 𝐴 ↔ βˆͺ 𝑦 βŠ† βˆͺ 𝐴))
2118, 20imbitrrid 245 . . . . . . . . . . . . . 14 (Lim 𝐴 β†’ (𝑦 βŠ† 𝐴 β†’ βˆͺ 𝑦 βŠ† 𝐴))
2221imp 408 . . . . . . . . . . . . 13 ((Lim 𝐴 ∧ 𝑦 βŠ† 𝐴) β†’ βˆͺ 𝑦 βŠ† 𝐴)
2317, 22jctird 528 . . . . . . . . . . . 12 ((Lim 𝐴 ∧ 𝑦 βŠ† 𝐴) β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 β†’ (𝐴 βŠ† βˆͺ 𝑦 ∧ βˆͺ 𝑦 βŠ† 𝐴)))
24 eqss 3996 . . . . . . . . . . . 12 (𝐴 = βˆͺ 𝑦 ↔ (𝐴 βŠ† βˆͺ 𝑦 ∧ βˆͺ 𝑦 βŠ† 𝐴))
2523, 24syl6ibr 252 . . . . . . . . . . 11 ((Lim 𝐴 ∧ 𝑦 βŠ† 𝐴) β†’ (βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀 β†’ 𝐴 = βˆͺ 𝑦))
2625imdistanda 573 . . . . . . . . . 10 (Lim 𝐴 β†’ ((𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀) β†’ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦)))
2726anim2d 613 . . . . . . . . 9 (Lim 𝐴 β†’ ((π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)) β†’ (π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))))
2827eximdv 1921 . . . . . . . 8 (Lim 𝐴 β†’ (βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀)) β†’ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))))
2928ss2abdv 4059 . . . . . . 7 (Lim 𝐴 β†’ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} βŠ† {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))})
30 intss 4972 . . . . . . 7 ({π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))} βŠ† {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
3129, 30syl 17 . . . . . 6 (Lim 𝐴 β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
3231adantl 483 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
33 limelon 6425 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ 𝐴 ∈ On)
34 cfval 10238 . . . . . 6 (𝐴 ∈ On β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
3533, 34syl 17 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ βˆ€π‘§ ∈ 𝐴 βˆƒπ‘€ ∈ 𝑦 𝑧 βŠ† 𝑀))})
3632, 35sseqtrrd 4022 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} βŠ† (cfβ€˜π΄))
37 cfub 10240 . . . . 5 (cfβ€˜π΄) βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦))}
38 eqimss 4039 . . . . . . . . . 10 (𝐴 = βˆͺ 𝑦 β†’ 𝐴 βŠ† βˆͺ 𝑦)
3938anim2i 618 . . . . . . . . 9 ((𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦) β†’ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦))
4039anim2i 618 . . . . . . . 8 ((π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦)) β†’ (π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦)))
4140eximi 1838 . . . . . . 7 (βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦)) β†’ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦)))
4241ss2abi 4062 . . . . . 6 {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} βŠ† {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦))}
43 intss 4972 . . . . . 6 ({π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} βŠ† {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦))} β†’ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦))} βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))})
4442, 43ax-mp 5 . . . . 5 ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 βŠ† βˆͺ 𝑦))} βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))}
4537, 44sstri 3990 . . . 4 (cfβ€˜π΄) βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))}
4636, 45jctil 521 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ ((cfβ€˜π΄) βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} ∧ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} βŠ† (cfβ€˜π΄)))
47 eqss 3996 . . 3 ((cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} ↔ ((cfβ€˜π΄) βŠ† ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} ∧ ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))} βŠ† (cfβ€˜π΄)))
4846, 47sylibr 233 . 2 ((𝐴 ∈ V ∧ Lim 𝐴) β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))})
491, 48sylan 581 1 ((𝐴 ∈ 𝐡 ∧ Lim 𝐴) β†’ (cfβ€˜π΄) = ∩ {π‘₯ ∣ βˆƒπ‘¦(π‘₯ = (cardβ€˜π‘¦) ∧ (𝑦 βŠ† 𝐴 ∧ 𝐴 = βˆͺ 𝑦))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  {cab 2710  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475   βŠ† wss 3947  βˆͺ cuni 4907  βˆ© cint 4949  Oncon0 6361  Lim wlim 6362  suc csuc 6363  β€˜cfv 6540  cardccrd 9926  cfccf 9928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-card 9930  df-cf 9932
This theorem is referenced by:  gruina  10809
  Copyright terms: Public domain W3C validator