MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflm Structured version   Visualization version   GIF version

Theorem cflm 10163
Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of [Enderton] p. 257. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
cflm ((𝐴𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem cflm
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴𝐵𝐴 ∈ V)
2 limsuc 7789 . . . . . . . . . . . . . . . . . 18 (Lim 𝐴 → (𝑣𝐴 ↔ suc 𝑣𝐴))
32biimpd 229 . . . . . . . . . . . . . . . . 17 (Lim 𝐴 → (𝑣𝐴 → suc 𝑣𝐴))
4 sseq1 3963 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = suc 𝑣 → (𝑧𝑤 ↔ suc 𝑣𝑤))
54rexbidv 3153 . . . . . . . . . . . . . . . . . . 19 (𝑧 = suc 𝑣 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝑦 suc 𝑣𝑤))
65rspcv 3575 . . . . . . . . . . . . . . . . . 18 (suc 𝑣𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → ∃𝑤𝑦 suc 𝑣𝑤))
7 sucssel 6408 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ V → (suc 𝑣𝑤𝑣𝑤))
87elv 3443 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑣𝑤𝑣𝑤)
98reximi 3067 . . . . . . . . . . . . . . . . . . 19 (∃𝑤𝑦 suc 𝑣𝑤 → ∃𝑤𝑦 𝑣𝑤)
10 eluni2 4865 . . . . . . . . . . . . . . . . . . 19 (𝑣 𝑦 ↔ ∃𝑤𝑦 𝑣𝑤)
119, 10sylibr 234 . . . . . . . . . . . . . . . . . 18 (∃𝑤𝑦 suc 𝑣𝑤𝑣 𝑦)
126, 11syl6com 37 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (suc 𝑣𝐴𝑣 𝑦))
133, 12syl9 77 . . . . . . . . . . . . . . . 16 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (𝑣𝐴𝑣 𝑦)))
1413ralrimdv 3127 . . . . . . . . . . . . . . 15 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → ∀𝑣𝐴 𝑣 𝑦))
15 dfss3 3926 . . . . . . . . . . . . . . 15 (𝐴 𝑦 ↔ ∀𝑣𝐴 𝑣 𝑦)
1614, 15imbitrrdi 252 . . . . . . . . . . . . . 14 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦))
1716adantr 480 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦))
18 uniss 4869 . . . . . . . . . . . . . . 15 (𝑦𝐴 𝑦 𝐴)
19 limuni 6373 . . . . . . . . . . . . . . . 16 (Lim 𝐴𝐴 = 𝐴)
2019sseq2d 3970 . . . . . . . . . . . . . . 15 (Lim 𝐴 → ( 𝑦𝐴 𝑦 𝐴))
2118, 20imbitrrid 246 . . . . . . . . . . . . . 14 (Lim 𝐴 → (𝑦𝐴 𝑦𝐴))
2221imp 406 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴) → 𝑦𝐴)
2317, 22jctird 526 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (𝐴 𝑦 𝑦𝐴)))
24 eqss 3953 . . . . . . . . . . . 12 (𝐴 = 𝑦 ↔ (𝐴 𝑦 𝑦𝐴))
2523, 24imbitrrdi 252 . . . . . . . . . . 11 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 = 𝑦))
2625imdistanda 571 . . . . . . . . . 10 (Lim 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) → (𝑦𝐴𝐴 = 𝑦)))
2726anim2d 612 . . . . . . . . 9 (Lim 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
2827eximdv 1917 . . . . . . . 8 (Lim 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
2928ss2abdv 4020 . . . . . . 7 (Lim 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
30 intss 4922 . . . . . . 7 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3129, 30syl 17 . . . . . 6 (Lim 𝐴 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3231adantl 481 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
33 limelon 6376 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
34 cfval 10160 . . . . . 6 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3533, 34syl 17 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3632, 35sseqtrrd 3975 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴))
37 cfub 10162 . . . . 5 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
38 eqimss 3996 . . . . . . . . . 10 (𝐴 = 𝑦𝐴 𝑦)
3938anim2i 617 . . . . . . . . 9 ((𝑦𝐴𝐴 = 𝑦) → (𝑦𝐴𝐴 𝑦))
4039anim2i 617 . . . . . . . 8 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)))
4140eximi 1835 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)))
4241ss2abi 4021 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
43 intss 4922 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
4442, 43ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))}
4537, 44sstri 3947 . . . 4 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))}
4636, 45jctil 519 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → ((cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴)))
47 eqss 3953 . . 3 ((cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ((cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴)))
4846, 47sylibr 234 . 2 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
491, 48sylan 580 1 ((𝐴𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3438  wss 3905   cuni 4861   cint 4899  Oncon0 6311  Lim wlim 6312  suc csuc 6313  cfv 6486  cardccrd 9850  cfccf 9852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-card 9854  df-cf 9856
This theorem is referenced by:  gruina  10731
  Copyright terms: Public domain W3C validator