Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflm Structured version   Visualization version   GIF version

Theorem cflm 9671
 Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of [Enderton] p. 257. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
cflm ((𝐴𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem cflm
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3512 . 2 (𝐴𝐵𝐴 ∈ V)
2 limsuc 7563 . . . . . . . . . . . . . . . . . 18 (Lim 𝐴 → (𝑣𝐴 ↔ suc 𝑣𝐴))
32biimpd 231 . . . . . . . . . . . . . . . . 17 (Lim 𝐴 → (𝑣𝐴 → suc 𝑣𝐴))
4 sseq1 3991 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = suc 𝑣 → (𝑧𝑤 ↔ suc 𝑣𝑤))
54rexbidv 3297 . . . . . . . . . . . . . . . . . . 19 (𝑧 = suc 𝑣 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝑦 suc 𝑣𝑤))
65rspcv 3617 . . . . . . . . . . . . . . . . . 18 (suc 𝑣𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → ∃𝑤𝑦 suc 𝑣𝑤))
7 sucssel 6282 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ V → (suc 𝑣𝑤𝑣𝑤))
87elv 3499 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑣𝑤𝑣𝑤)
98reximi 3243 . . . . . . . . . . . . . . . . . . 19 (∃𝑤𝑦 suc 𝑣𝑤 → ∃𝑤𝑦 𝑣𝑤)
10 eluni2 4841 . . . . . . . . . . . . . . . . . . 19 (𝑣 𝑦 ↔ ∃𝑤𝑦 𝑣𝑤)
119, 10sylibr 236 . . . . . . . . . . . . . . . . . 18 (∃𝑤𝑦 suc 𝑣𝑤𝑣 𝑦)
126, 11syl6com 37 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (suc 𝑣𝐴𝑣 𝑦))
133, 12syl9 77 . . . . . . . . . . . . . . . 16 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (𝑣𝐴𝑣 𝑦)))
1413ralrimdv 3188 . . . . . . . . . . . . . . 15 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → ∀𝑣𝐴 𝑣 𝑦))
15 dfss3 3955 . . . . . . . . . . . . . . 15 (𝐴 𝑦 ↔ ∀𝑣𝐴 𝑣 𝑦)
1614, 15syl6ibr 254 . . . . . . . . . . . . . 14 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦))
1716adantr 483 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦))
18 uniss 4845 . . . . . . . . . . . . . . 15 (𝑦𝐴 𝑦 𝐴)
19 limuni 6250 . . . . . . . . . . . . . . . 16 (Lim 𝐴𝐴 = 𝐴)
2019sseq2d 3998 . . . . . . . . . . . . . . 15 (Lim 𝐴 → ( 𝑦𝐴 𝑦 𝐴))
2118, 20syl5ibr 248 . . . . . . . . . . . . . 14 (Lim 𝐴 → (𝑦𝐴 𝑦𝐴))
2221imp 409 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴) → 𝑦𝐴)
2317, 22jctird 529 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (𝐴 𝑦 𝑦𝐴)))
24 eqss 3981 . . . . . . . . . . . 12 (𝐴 = 𝑦 ↔ (𝐴 𝑦 𝑦𝐴))
2523, 24syl6ibr 254 . . . . . . . . . . 11 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 = 𝑦))
2625imdistanda 574 . . . . . . . . . 10 (Lim 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) → (𝑦𝐴𝐴 = 𝑦)))
2726anim2d 613 . . . . . . . . 9 (Lim 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
2827eximdv 1914 . . . . . . . 8 (Lim 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
2928ss2abdv 4043 . . . . . . 7 (Lim 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
30 intss 4896 . . . . . . 7 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3129, 30syl 17 . . . . . 6 (Lim 𝐴 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3231adantl 484 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
33 limelon 6253 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
34 cfval 9668 . . . . . 6 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3533, 34syl 17 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3632, 35sseqtrrd 4007 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴))
37 cfub 9670 . . . . 5 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
38 eqimss 4022 . . . . . . . . . 10 (𝐴 = 𝑦𝐴 𝑦)
3938anim2i 618 . . . . . . . . 9 ((𝑦𝐴𝐴 = 𝑦) → (𝑦𝐴𝐴 𝑦))
4039anim2i 618 . . . . . . . 8 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)))
4140eximi 1831 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)))
4241ss2abi 4042 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
43 intss 4896 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
4442, 43ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))}
4537, 44sstri 3975 . . . 4 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))}
4636, 45jctil 522 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → ((cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴)))
47 eqss 3981 . . 3 ((cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ((cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴)))
4846, 47sylibr 236 . 2 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
491, 48sylan 582 1 ((𝐴𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1533  ∃wex 1776   ∈ wcel 2110  {cab 2799  ∀wral 3138  ∃wrex 3139  Vcvv 3494   ⊆ wss 3935  ∪ cuni 4837  ∩ cint 4875  Oncon0 6190  Lim wlim 6191  suc csuc 6192  ‘cfv 6354  cardccrd 9363  cfccf 9365 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-card 9367  df-cf 9369 This theorem is referenced by:  gruina  10239
 Copyright terms: Public domain W3C validator