MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflm Structured version   Visualization version   GIF version

Theorem cflm 10150
Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of [Enderton] p. 257. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
cflm ((𝐴𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem cflm
Dummy variables 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐴𝐵𝐴 ∈ V)
2 limsuc 7787 . . . . . . . . . . . . . . . . . 18 (Lim 𝐴 → (𝑣𝐴 ↔ suc 𝑣𝐴))
32biimpd 229 . . . . . . . . . . . . . . . . 17 (Lim 𝐴 → (𝑣𝐴 → suc 𝑣𝐴))
4 sseq1 3956 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = suc 𝑣 → (𝑧𝑤 ↔ suc 𝑣𝑤))
54rexbidv 3157 . . . . . . . . . . . . . . . . . . 19 (𝑧 = suc 𝑣 → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤𝑦 suc 𝑣𝑤))
65rspcv 3569 . . . . . . . . . . . . . . . . . 18 (suc 𝑣𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → ∃𝑤𝑦 suc 𝑣𝑤))
7 sucssel 6410 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ V → (suc 𝑣𝑤𝑣𝑤))
87elv 3442 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑣𝑤𝑣𝑤)
98reximi 3071 . . . . . . . . . . . . . . . . . . 19 (∃𝑤𝑦 suc 𝑣𝑤 → ∃𝑤𝑦 𝑣𝑤)
10 eluni2 4864 . . . . . . . . . . . . . . . . . . 19 (𝑣 𝑦 ↔ ∃𝑤𝑦 𝑣𝑤)
119, 10sylibr 234 . . . . . . . . . . . . . . . . . 18 (∃𝑤𝑦 suc 𝑣𝑤𝑣 𝑦)
126, 11syl6com 37 . . . . . . . . . . . . . . . . 17 (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (suc 𝑣𝐴𝑣 𝑦))
133, 12syl9 77 . . . . . . . . . . . . . . . 16 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (𝑣𝐴𝑣 𝑦)))
1413ralrimdv 3131 . . . . . . . . . . . . . . 15 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → ∀𝑣𝐴 𝑣 𝑦))
15 dfss3 3919 . . . . . . . . . . . . . . 15 (𝐴 𝑦 ↔ ∀𝑣𝐴 𝑣 𝑦)
1614, 15imbitrrdi 252 . . . . . . . . . . . . . 14 (Lim 𝐴 → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦))
1716adantr 480 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 𝑦))
18 uniss 4868 . . . . . . . . . . . . . . 15 (𝑦𝐴 𝑦 𝐴)
19 limuni 6375 . . . . . . . . . . . . . . . 16 (Lim 𝐴𝐴 = 𝐴)
2019sseq2d 3963 . . . . . . . . . . . . . . 15 (Lim 𝐴 → ( 𝑦𝐴 𝑦 𝐴))
2118, 20imbitrrid 246 . . . . . . . . . . . . . 14 (Lim 𝐴 → (𝑦𝐴 𝑦𝐴))
2221imp 406 . . . . . . . . . . . . 13 ((Lim 𝐴𝑦𝐴) → 𝑦𝐴)
2317, 22jctird 526 . . . . . . . . . . . 12 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤 → (𝐴 𝑦 𝑦𝐴)))
24 eqss 3946 . . . . . . . . . . . 12 (𝐴 = 𝑦 ↔ (𝐴 𝑦 𝑦𝐴))
2523, 24imbitrrdi 252 . . . . . . . . . . 11 ((Lim 𝐴𝑦𝐴) → (∀𝑧𝐴𝑤𝑦 𝑧𝑤𝐴 = 𝑦))
2625imdistanda 571 . . . . . . . . . 10 (Lim 𝐴 → ((𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤) → (𝑦𝐴𝐴 = 𝑦)))
2726anim2d 612 . . . . . . . . 9 (Lim 𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
2827eximdv 1918 . . . . . . . 8 (Lim 𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))))
2928ss2abdv 4014 . . . . . . 7 (Lim 𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
30 intss 4921 . . . . . . 7 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3129, 30syl 17 . . . . . 6 (Lim 𝐴 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3231adantl 481 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
33 limelon 6378 . . . . . 6 ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On)
34 cfval 10147 . . . . . 6 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3533, 34syl 17 . . . . 5 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑤𝑦 𝑧𝑤))})
3632, 35sseqtrrd 3968 . . . 4 ((𝐴 ∈ V ∧ Lim 𝐴) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴))
37 cfub 10149 . . . . 5 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
38 eqimss 3989 . . . . . . . . . 10 (𝐴 = 𝑦𝐴 𝑦)
3938anim2i 617 . . . . . . . . 9 ((𝑦𝐴𝐴 = 𝑦) → (𝑦𝐴𝐴 𝑦))
4039anim2i 617 . . . . . . . 8 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)))
4140eximi 1836 . . . . . . 7 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦)))
4241ss2abi 4015 . . . . . 6 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))}
43 intss 4921 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
4442, 43ax-mp 5 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))}
4537, 44sstri 3940 . . . 4 (cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))}
4636, 45jctil 519 . . 3 ((𝐴 ∈ V ∧ Lim 𝐴) → ((cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴)))
47 eqss 3946 . . 3 ((cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ↔ ((cf‘𝐴) ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))} ⊆ (cf‘𝐴)))
4846, 47sylibr 234 . 2 ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
491, 48sylan 580 1 ((𝐴𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴𝐴 = 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  {cab 2711  wral 3048  wrex 3057  Vcvv 3437  wss 3898   cuni 4860   cint 4899  Oncon0 6313  Lim wlim 6314  suc csuc 6315  cfv 6488  cardccrd 9837  cfccf 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-card 9841  df-cf 9843
This theorem is referenced by:  gruina  10718
  Copyright terms: Public domain W3C validator