Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. 2
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
2 | | limsuc 7696 |
. . . . . . . . . . . . . . . . . 18
⊢ (Lim
𝐴 → (𝑣 ∈ 𝐴 ↔ suc 𝑣 ∈ 𝐴)) |
3 | 2 | biimpd 228 |
. . . . . . . . . . . . . . . . 17
⊢ (Lim
𝐴 → (𝑣 ∈ 𝐴 → suc 𝑣 ∈ 𝐴)) |
4 | | sseq1 3946 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = suc 𝑣 → (𝑧 ⊆ 𝑤 ↔ suc 𝑣 ⊆ 𝑤)) |
5 | 4 | rexbidv 3226 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = suc 𝑣 → (∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤)) |
6 | 5 | rspcv 3557 |
. . . . . . . . . . . . . . . . . 18
⊢ (suc
𝑣 ∈ 𝐴 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ∃𝑤 ∈ 𝑦 suc 𝑣 ⊆ 𝑤)) |
7 | | sucssel 6358 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ V → (suc 𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑤)) |
8 | 7 | elv 3438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑣 ⊆ 𝑤 → 𝑣 ∈ 𝑤) |
9 | 8 | reximi 3178 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∃𝑤 ∈
𝑦 suc 𝑣 ⊆ 𝑤 → ∃𝑤 ∈ 𝑦 𝑣 ∈ 𝑤) |
10 | | eluni2 4843 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ ∪ 𝑦
↔ ∃𝑤 ∈
𝑦 𝑣 ∈ 𝑤) |
11 | 9, 10 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑤 ∈
𝑦 suc 𝑣 ⊆ 𝑤 → 𝑣 ∈ ∪ 𝑦) |
12 | 6, 11 | syl6com 37 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑧 ∈
𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → (suc 𝑣 ∈ 𝐴 → 𝑣 ∈ ∪ 𝑦)) |
13 | 3, 12 | syl9 77 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
𝐴 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → (𝑣 ∈ 𝐴 → 𝑣 ∈ ∪ 𝑦))) |
14 | 13 | ralrimdv 3105 |
. . . . . . . . . . . . . . 15
⊢ (Lim
𝐴 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → ∀𝑣 ∈ 𝐴 𝑣 ∈ ∪ 𝑦)) |
15 | | dfss3 3909 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ∪ 𝑦
↔ ∀𝑣 ∈
𝐴 𝑣 ∈ ∪ 𝑦) |
16 | 14, 15 | syl6ibr 251 |
. . . . . . . . . . . . . 14
⊢ (Lim
𝐴 → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 ⊆ ∪ 𝑦)) |
17 | 16 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴) → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 ⊆ ∪ 𝑦)) |
18 | | uniss 4847 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ⊆ 𝐴 → ∪ 𝑦 ⊆ ∪ 𝐴) |
19 | | limuni 6326 |
. . . . . . . . . . . . . . . 16
⊢ (Lim
𝐴 → 𝐴 = ∪ 𝐴) |
20 | 19 | sseq2d 3953 |
. . . . . . . . . . . . . . 15
⊢ (Lim
𝐴 → (∪ 𝑦
⊆ 𝐴 ↔ ∪ 𝑦
⊆ ∪ 𝐴)) |
21 | 18, 20 | syl5ibr 245 |
. . . . . . . . . . . . . 14
⊢ (Lim
𝐴 → (𝑦 ⊆ 𝐴 → ∪ 𝑦 ⊆ 𝐴)) |
22 | 21 | imp 407 |
. . . . . . . . . . . . 13
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴) → ∪ 𝑦 ⊆ 𝐴) |
23 | 17, 22 | jctird 527 |
. . . . . . . . . . . 12
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴) → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → (𝐴 ⊆ ∪ 𝑦 ∧ ∪ 𝑦
⊆ 𝐴))) |
24 | | eqss 3936 |
. . . . . . . . . . . 12
⊢ (𝐴 = ∪
𝑦 ↔ (𝐴 ⊆ ∪ 𝑦 ∧ ∪ 𝑦
⊆ 𝐴)) |
25 | 23, 24 | syl6ibr 251 |
. . . . . . . . . . 11
⊢ ((Lim
𝐴 ∧ 𝑦 ⊆ 𝐴) → (∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 → 𝐴 = ∪ 𝑦)) |
26 | 25 | imdistanda 572 |
. . . . . . . . . 10
⊢ (Lim
𝐴 → ((𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤) → (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))) |
27 | 26 | anim2d 612 |
. . . . . . . . 9
⊢ (Lim
𝐴 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) → (𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)))) |
28 | 27 | eximdv 1920 |
. . . . . . . 8
⊢ (Lim
𝐴 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)))) |
29 | 28 | ss2abdv 3997 |
. . . . . . 7
⊢ (Lim
𝐴 → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
30 | | intss 4900 |
. . . . . . 7
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
31 | 29, 30 | syl 17 |
. . . . . 6
⊢ (Lim
𝐴 → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
32 | 31 | adantl 482 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
33 | | limelon 6329 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → 𝐴 ∈ On) |
34 | | cfval 10003 |
. . . . . 6
⊢ (𝐴 ∈ On →
(cf‘𝐴) = ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
35 | 33, 34 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) |
36 | 32, 35 | sseqtrrd 3962 |
. . . 4
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ (cf‘𝐴)) |
37 | | cfub 10005 |
. . . . 5
⊢
(cf‘𝐴) ⊆
∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} |
38 | | eqimss 3977 |
. . . . . . . . . 10
⊢ (𝐴 = ∪
𝑦 → 𝐴 ⊆ ∪ 𝑦) |
39 | 38 | anim2i 617 |
. . . . . . . . 9
⊢ ((𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦) → (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦)) |
40 | 39 | anim2i 617 |
. . . . . . . 8
⊢ ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → (𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))) |
41 | 40 | eximi 1837 |
. . . . . . 7
⊢
(∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦)) → ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))) |
42 | 41 | ss2abi 4000 |
. . . . . 6
⊢ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} |
43 | | intss 4900 |
. . . . . 6
⊢ ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} → ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
44 | 42, 43 | ax-mp 5 |
. . . . 5
⊢ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ ∪ 𝑦))} ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} |
45 | 37, 44 | sstri 3930 |
. . . 4
⊢
(cf‘𝐴) ⊆
∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} |
46 | 36, 45 | jctil 520 |
. . 3
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → ((cf‘𝐴) ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∧ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ (cf‘𝐴))) |
47 | | eqss 3936 |
. . 3
⊢
((cf‘𝐴) =
∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ↔ ((cf‘𝐴) ⊆ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ∧ ∩ {𝑥
∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))} ⊆ (cf‘𝐴))) |
48 | 46, 47 | sylibr 233 |
. 2
⊢ ((𝐴 ∈ V ∧ Lim 𝐴) → (cf‘𝐴) = ∩
{𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |
49 | 1, 48 | sylan 580 |
1
⊢ ((𝐴 ∈ 𝐵 ∧ Lim 𝐴) → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ 𝐴 = ∪ 𝑦))}) |