| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oa0r | Structured version Visualization version GIF version | ||
| Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Lemma 2.14 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
| Ref | Expression |
|---|---|
| oa0r | ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . 3 ⊢ (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅)) | |
| 2 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
| 3 | 1, 2 | eqeq12d 2745 | . 2 ⊢ (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅)) |
| 4 | oveq2 7395 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦)) | |
| 5 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 6 | 4, 5 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦)) |
| 7 | oveq2 7395 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦)) | |
| 8 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
| 9 | 7, 8 | eqeq12d 2745 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦)) |
| 10 | oveq2 7395 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴)) | |
| 11 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 12 | 10, 11 | eqeq12d 2745 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴)) |
| 13 | 0elon 6387 | . . 3 ⊢ ∅ ∈ On | |
| 14 | oa0 8480 | . . 3 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
| 15 | 13, 14 | ax-mp 5 | . 2 ⊢ (∅ +o ∅) = ∅ |
| 16 | oasuc 8488 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) | |
| 17 | 13, 16 | mpan 690 | . . . 4 ⊢ (𝑦 ∈ On → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) |
| 18 | suceq 6400 | . . . 4 ⊢ ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦) | |
| 19 | 17, 18 | sylan9eq 2784 | . . 3 ⊢ ((𝑦 ∈ On ∧ (∅ +o 𝑦) = 𝑦) → (∅ +o suc 𝑦) = suc 𝑦) |
| 20 | 19 | ex 412 | . 2 ⊢ (𝑦 ∈ On → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦)) |
| 21 | iuneq2 4975 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑦 ∈ 𝑥 𝑦) | |
| 22 | uniiun 5022 | . . . 4 ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
| 23 | 21, 22 | eqtr4di 2782 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑥) |
| 24 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 25 | oalim 8496 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) | |
| 26 | 13, 25 | mpan 690 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) |
| 27 | 24, 26 | mpan 690 | . . . 4 ⊢ (Lim 𝑥 → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) |
| 28 | limuni 6394 | . . . 4 ⊢ (Lim 𝑥 → 𝑥 = ∪ 𝑥) | |
| 29 | 27, 28 | eqeq12d 2745 | . . 3 ⊢ (Lim 𝑥 → ((∅ +o 𝑥) = 𝑥 ↔ ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑥)) |
| 30 | 23, 29 | imbitrrid 246 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → (∅ +o 𝑥) = 𝑥)) |
| 31 | 3, 6, 9, 12, 15, 20, 30 | tfinds 7836 | 1 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ∅c0 4296 ∪ cuni 4871 ∪ ciun 4955 Oncon0 6332 Lim wlim 6333 suc csuc 6334 (class class class)co 7387 +o coa 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 |
| This theorem is referenced by: om1 8506 oaword2 8517 oeeui 8566 oaabs2 8613 cantnfp1 9634 oaordnrex 43284 oacl2g 43319 tfsconcat0i 43334 ofoaf 43344 ofoaid2 43348 |
| Copyright terms: Public domain | W3C validator |