![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oa0r | Structured version Visualization version GIF version |
Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Lemma 2.14 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
Ref | Expression |
---|---|
oa0r | ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7369 | . . 3 ⊢ (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅)) | |
2 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
3 | 1, 2 | eqeq12d 2749 | . 2 ⊢ (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅)) |
4 | oveq2 7369 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦)) | |
5 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
6 | 4, 5 | eqeq12d 2749 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦)) |
7 | oveq2 7369 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦)) | |
8 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
9 | 7, 8 | eqeq12d 2749 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦)) |
10 | oveq2 7369 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴)) | |
11 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
12 | 10, 11 | eqeq12d 2749 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴)) |
13 | 0elon 6375 | . . 3 ⊢ ∅ ∈ On | |
14 | oa0 8466 | . . 3 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ (∅ +o ∅) = ∅ |
16 | oasuc 8474 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) | |
17 | 13, 16 | mpan 689 | . . . 4 ⊢ (𝑦 ∈ On → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) |
18 | suceq 6387 | . . . 4 ⊢ ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦) | |
19 | 17, 18 | sylan9eq 2793 | . . 3 ⊢ ((𝑦 ∈ On ∧ (∅ +o 𝑦) = 𝑦) → (∅ +o suc 𝑦) = suc 𝑦) |
20 | 19 | ex 414 | . 2 ⊢ (𝑦 ∈ On → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦)) |
21 | iuneq2 4977 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑦 ∈ 𝑥 𝑦) | |
22 | uniiun 5022 | . . . 4 ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
23 | 21, 22 | eqtr4di 2791 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑥) |
24 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
25 | oalim 8482 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) | |
26 | 13, 25 | mpan 689 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) |
27 | 24, 26 | mpan 689 | . . . 4 ⊢ (Lim 𝑥 → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) |
28 | limuni 6382 | . . . 4 ⊢ (Lim 𝑥 → 𝑥 = ∪ 𝑥) | |
29 | 27, 28 | eqeq12d 2749 | . . 3 ⊢ (Lim 𝑥 → ((∅ +o 𝑥) = 𝑥 ↔ ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑥)) |
30 | 23, 29 | imbitrrid 245 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → (∅ +o 𝑥) = 𝑥)) |
31 | 3, 6, 9, 12, 15, 20, 30 | tfinds 7800 | 1 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 Vcvv 3447 ∅c0 4286 ∪ cuni 4869 ∪ ciun 4958 Oncon0 6321 Lim wlim 6322 suc csuc 6323 (class class class)co 7361 +o coa 8413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-oadd 8420 |
This theorem is referenced by: om1 8493 oaword2 8504 oeeui 8553 oaabs2 8599 cantnfp1 9625 oaordnrex 41677 oacl2g 41712 ofoaf 41718 ofoaid2 41722 |
Copyright terms: Public domain | W3C validator |