![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oa0r | Structured version Visualization version GIF version |
Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Lemma 2.14 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
Ref | Expression |
---|---|
oa0r | ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7410 | . . 3 ⊢ (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅)) | |
2 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
3 | 1, 2 | eqeq12d 2740 | . 2 ⊢ (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅)) |
4 | oveq2 7410 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦)) | |
5 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
6 | 4, 5 | eqeq12d 2740 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦)) |
7 | oveq2 7410 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦)) | |
8 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
9 | 7, 8 | eqeq12d 2740 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦)) |
10 | oveq2 7410 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴)) | |
11 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
12 | 10, 11 | eqeq12d 2740 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴)) |
13 | 0elon 6409 | . . 3 ⊢ ∅ ∈ On | |
14 | oa0 8512 | . . 3 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ (∅ +o ∅) = ∅ |
16 | oasuc 8520 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) | |
17 | 13, 16 | mpan 687 | . . . 4 ⊢ (𝑦 ∈ On → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) |
18 | suceq 6421 | . . . 4 ⊢ ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦) | |
19 | 17, 18 | sylan9eq 2784 | . . 3 ⊢ ((𝑦 ∈ On ∧ (∅ +o 𝑦) = 𝑦) → (∅ +o suc 𝑦) = suc 𝑦) |
20 | 19 | ex 412 | . 2 ⊢ (𝑦 ∈ On → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦)) |
21 | iuneq2 5007 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑦 ∈ 𝑥 𝑦) | |
22 | uniiun 5052 | . . . 4 ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
23 | 21, 22 | eqtr4di 2782 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑥) |
24 | vex 3470 | . . . . 5 ⊢ 𝑥 ∈ V | |
25 | oalim 8528 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) | |
26 | 13, 25 | mpan 687 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) |
27 | 24, 26 | mpan 687 | . . . 4 ⊢ (Lim 𝑥 → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) |
28 | limuni 6416 | . . . 4 ⊢ (Lim 𝑥 → 𝑥 = ∪ 𝑥) | |
29 | 27, 28 | eqeq12d 2740 | . . 3 ⊢ (Lim 𝑥 → ((∅ +o 𝑥) = 𝑥 ↔ ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑥)) |
30 | 23, 29 | imbitrrid 245 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → (∅ +o 𝑥) = 𝑥)) |
31 | 3, 6, 9, 12, 15, 20, 30 | tfinds 7843 | 1 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 Vcvv 3466 ∅c0 4315 ∪ cuni 4900 ∪ ciun 4988 Oncon0 6355 Lim wlim 6356 suc csuc 6357 (class class class)co 7402 +o coa 8459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-oadd 8466 |
This theorem is referenced by: om1 8538 oaword2 8549 oeeui 8598 oaabs2 8645 cantnfp1 9673 oaordnrex 42559 oacl2g 42594 tfsconcat0i 42609 ofoaf 42619 ofoaid2 42623 |
Copyright terms: Public domain | W3C validator |