MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oa0r Structured version   Visualization version   GIF version

Theorem oa0r 8502
Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Lemma 2.14 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.)
Assertion
Ref Expression
oa0r (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴)

Proof of Theorem oa0r
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7395 . . 3 (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅))
2 id 22 . . 3 (𝑥 = ∅ → 𝑥 = ∅)
31, 2eqeq12d 2745 . 2 (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅))
4 oveq2 7395 . . 3 (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦))
5 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
64, 5eqeq12d 2745 . 2 (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦))
7 oveq2 7395 . . 3 (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦))
8 id 22 . . 3 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
97, 8eqeq12d 2745 . 2 (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦))
10 oveq2 7395 . . 3 (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴))
11 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
1210, 11eqeq12d 2745 . 2 (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴))
13 0elon 6387 . . 3 ∅ ∈ On
14 oa0 8480 . . 3 (∅ ∈ On → (∅ +o ∅) = ∅)
1513, 14ax-mp 5 . 2 (∅ +o ∅) = ∅
16 oasuc 8488 . . . . 5 ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦))
1713, 16mpan 690 . . . 4 (𝑦 ∈ On → (∅ +o suc 𝑦) = suc (∅ +o 𝑦))
18 suceq 6400 . . . 4 ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦)
1917, 18sylan9eq 2784 . . 3 ((𝑦 ∈ On ∧ (∅ +o 𝑦) = 𝑦) → (∅ +o suc 𝑦) = suc 𝑦)
2019ex 412 . 2 (𝑦 ∈ On → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦))
21 iuneq2 4975 . . . 4 (∀𝑦𝑥 (∅ +o 𝑦) = 𝑦 𝑦𝑥 (∅ +o 𝑦) = 𝑦𝑥 𝑦)
22 uniiun 5022 . . . 4 𝑥 = 𝑦𝑥 𝑦
2321, 22eqtr4di 2782 . . 3 (∀𝑦𝑥 (∅ +o 𝑦) = 𝑦 𝑦𝑥 (∅ +o 𝑦) = 𝑥)
24 vex 3451 . . . . 5 𝑥 ∈ V
25 oalim 8496 . . . . . 6 ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ +o 𝑥) = 𝑦𝑥 (∅ +o 𝑦))
2613, 25mpan 690 . . . . 5 ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ +o 𝑥) = 𝑦𝑥 (∅ +o 𝑦))
2724, 26mpan 690 . . . 4 (Lim 𝑥 → (∅ +o 𝑥) = 𝑦𝑥 (∅ +o 𝑦))
28 limuni 6394 . . . 4 (Lim 𝑥𝑥 = 𝑥)
2927, 28eqeq12d 2745 . . 3 (Lim 𝑥 → ((∅ +o 𝑥) = 𝑥 𝑦𝑥 (∅ +o 𝑦) = 𝑥))
3023, 29imbitrrid 246 . 2 (Lim 𝑥 → (∀𝑦𝑥 (∅ +o 𝑦) = 𝑦 → (∅ +o 𝑥) = 𝑥))
313, 6, 9, 12, 15, 20, 30tfinds 7836 1 (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  c0 4296   cuni 4871   ciun 4955  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387   +o coa 8431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-oadd 8438
This theorem is referenced by:  om1  8506  oaword2  8517  oeeui  8566  oaabs2  8613  cantnfp1  9634  oaordnrex  43284  oacl2g  43319  tfsconcat0i  43334  ofoaf  43344  ofoaid2  43348
  Copyright terms: Public domain W3C validator