| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oa0r | Structured version Visualization version GIF version | ||
| Description: Ordinal addition with zero. Proposition 8.3 of [TakeutiZaring] p. 57. Lemma 2.14 of [Schloeder] p. 5. (Contributed by NM, 5-May-1995.) |
| Ref | Expression |
|---|---|
| oa0r | ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7349 | . . 3 ⊢ (𝑥 = ∅ → (∅ +o 𝑥) = (∅ +o ∅)) | |
| 2 | id 22 | . . 3 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
| 3 | 1, 2 | eqeq12d 2746 | . 2 ⊢ (𝑥 = ∅ → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o ∅) = ∅)) |
| 4 | oveq2 7349 | . . 3 ⊢ (𝑥 = 𝑦 → (∅ +o 𝑥) = (∅ +o 𝑦)) | |
| 5 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 6 | 4, 5 | eqeq12d 2746 | . 2 ⊢ (𝑥 = 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝑦) = 𝑦)) |
| 7 | oveq2 7349 | . . 3 ⊢ (𝑥 = suc 𝑦 → (∅ +o 𝑥) = (∅ +o suc 𝑦)) | |
| 8 | id 22 | . . 3 ⊢ (𝑥 = suc 𝑦 → 𝑥 = suc 𝑦) | |
| 9 | 7, 8 | eqeq12d 2746 | . 2 ⊢ (𝑥 = suc 𝑦 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o suc 𝑦) = suc 𝑦)) |
| 10 | oveq2 7349 | . . 3 ⊢ (𝑥 = 𝐴 → (∅ +o 𝑥) = (∅ +o 𝐴)) | |
| 11 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 12 | 10, 11 | eqeq12d 2746 | . 2 ⊢ (𝑥 = 𝐴 → ((∅ +o 𝑥) = 𝑥 ↔ (∅ +o 𝐴) = 𝐴)) |
| 13 | 0elon 6357 | . . 3 ⊢ ∅ ∈ On | |
| 14 | oa0 8426 | . . 3 ⊢ (∅ ∈ On → (∅ +o ∅) = ∅) | |
| 15 | 13, 14 | ax-mp 5 | . 2 ⊢ (∅ +o ∅) = ∅ |
| 16 | oasuc 8434 | . . . . 5 ⊢ ((∅ ∈ On ∧ 𝑦 ∈ On) → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) | |
| 17 | 13, 16 | mpan 690 | . . . 4 ⊢ (𝑦 ∈ On → (∅ +o suc 𝑦) = suc (∅ +o 𝑦)) |
| 18 | suceq 6370 | . . . 4 ⊢ ((∅ +o 𝑦) = 𝑦 → suc (∅ +o 𝑦) = suc 𝑦) | |
| 19 | 17, 18 | sylan9eq 2785 | . . 3 ⊢ ((𝑦 ∈ On ∧ (∅ +o 𝑦) = 𝑦) → (∅ +o suc 𝑦) = suc 𝑦) |
| 20 | 19 | ex 412 | . 2 ⊢ (𝑦 ∈ On → ((∅ +o 𝑦) = 𝑦 → (∅ +o suc 𝑦) = suc 𝑦)) |
| 21 | iuneq2 4959 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑦 ∈ 𝑥 𝑦) | |
| 22 | uniiun 5005 | . . . 4 ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
| 23 | 21, 22 | eqtr4di 2783 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑥) |
| 24 | vex 3438 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 25 | oalim 8442 | . . . . . 6 ⊢ ((∅ ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) | |
| 26 | 13, 25 | mpan 690 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ Lim 𝑥) → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) |
| 27 | 24, 26 | mpan 690 | . . . 4 ⊢ (Lim 𝑥 → (∅ +o 𝑥) = ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦)) |
| 28 | limuni 6364 | . . . 4 ⊢ (Lim 𝑥 → 𝑥 = ∪ 𝑥) | |
| 29 | 27, 28 | eqeq12d 2746 | . . 3 ⊢ (Lim 𝑥 → ((∅ +o 𝑥) = 𝑥 ↔ ∪ 𝑦 ∈ 𝑥 (∅ +o 𝑦) = ∪ 𝑥)) |
| 30 | 23, 29 | imbitrrid 246 | . 2 ⊢ (Lim 𝑥 → (∀𝑦 ∈ 𝑥 (∅ +o 𝑦) = 𝑦 → (∅ +o 𝑥) = 𝑥)) |
| 31 | 3, 6, 9, 12, 15, 20, 30 | tfinds 7785 | 1 ⊢ (𝐴 ∈ On → (∅ +o 𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 Vcvv 3434 ∅c0 4281 ∪ cuni 4857 ∪ ciun 4939 Oncon0 6302 Lim wlim 6303 suc csuc 6304 (class class class)co 7341 +o coa 8377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-oadd 8384 |
| This theorem is referenced by: om1 8452 oaword2 8463 oeeui 8512 oaabs2 8559 cantnfp1 9566 fineqvnttrclse 35112 oaordnrex 43307 oacl2g 43342 tfsconcat0i 43357 ofoaf 43367 ofoaid2 43371 |
| Copyright terms: Public domain | W3C validator |