| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cfslbn | Structured version Visualization version GIF version | ||
| Description: Any subset of 𝐴 smaller than its cofinality has union less than 𝐴. (This is the contrapositive to cfslb 10157.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| cfslb.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| cfslbn | ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ (cf‘𝐴)) → ∪ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss 4867 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴) | |
| 2 | limuni 6368 | . . . . . . . . 9 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 3 | 2 | sseq2d 3967 | . . . . . . . 8 ⊢ (Lim 𝐴 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ ∪ 𝐴)) |
| 4 | 1, 3 | imbitrrid 246 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴)) |
| 5 | 4 | imp 406 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∪ 𝐵 ⊆ 𝐴) |
| 6 | limord 6367 | . . . . . . . . . . . 12 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 7 | ordsson 7716 | . . . . . . . . . . . 12 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . . . 11 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
| 9 | sstr2 3941 | . . . . . . . . . . 11 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On)) | |
| 10 | 8, 9 | syl5com 31 | . . . . . . . . . 10 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → 𝐵 ⊆ On)) |
| 11 | ssorduni 7712 | . . . . . . . . . 10 ⊢ (𝐵 ⊆ On → Ord ∪ 𝐵) | |
| 12 | 10, 11 | syl6 35 | . . . . . . . . 9 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → Ord ∪ 𝐵)) |
| 13 | 12, 6 | jctird 526 | . . . . . . . 8 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → (Ord ∪ 𝐵 ∧ Ord 𝐴))) |
| 14 | ordsseleq 6335 | . . . . . . . 8 ⊢ ((Ord ∪ 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴))) | |
| 15 | 13, 14 | syl6 35 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴)))) |
| 16 | 15 | imp 406 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴))) |
| 17 | 5, 16 | mpbid 232 | . . . . 5 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴)) |
| 18 | 17 | ord 864 | . . . 4 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∪ 𝐵 ∈ 𝐴 → ∪ 𝐵 = 𝐴)) |
| 19 | cfslb.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
| 20 | 19 | cfslb 10157 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵) |
| 21 | domnsym 9016 | . . . . . 6 ⊢ ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴)) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴) → ¬ 𝐵 ≺ (cf‘𝐴)) |
| 23 | 22 | 3expia 1121 | . . . 4 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴))) |
| 24 | 18, 23 | syld 47 | . . 3 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∪ 𝐵 ∈ 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴))) |
| 25 | 24 | con4d 115 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ≺ (cf‘𝐴) → ∪ 𝐵 ∈ 𝐴)) |
| 26 | 25 | 3impia 1117 | 1 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ (cf‘𝐴)) → ∪ 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 ∪ cuni 4859 class class class wbr 5091 Ord word 6305 Oncon0 6306 Lim wlim 6307 ‘cfv 6481 ≼ cdom 8867 ≺ csdm 8868 cfccf 9830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-card 9832 df-cf 9834 |
| This theorem is referenced by: cfslb2n 10159 |
| Copyright terms: Public domain | W3C validator |