![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfslbn | Structured version Visualization version GIF version |
Description: Any subset of 𝐴 smaller than its cofinality has union less than 𝐴. (This is the contrapositive to cfslb 9376.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
cfslb.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cfslbn | ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ (cf‘𝐴)) → ∪ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4651 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴) | |
2 | limuni 6001 | . . . . . . . . 9 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
3 | 2 | sseq2d 3829 | . . . . . . . 8 ⊢ (Lim 𝐴 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ ∪ 𝐴)) |
4 | 1, 3 | syl5ibr 238 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴)) |
5 | 4 | imp 396 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∪ 𝐵 ⊆ 𝐴) |
6 | limord 6000 | . . . . . . . . . . . 12 ⊢ (Lim 𝐴 → Ord 𝐴) | |
7 | ordsson 7223 | . . . . . . . . . . . 12 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
8 | 6, 7 | syl 17 | . . . . . . . . . . 11 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
9 | sstr2 3805 | . . . . . . . . . . 11 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On)) | |
10 | 8, 9 | syl5com 31 | . . . . . . . . . 10 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → 𝐵 ⊆ On)) |
11 | ssorduni 7219 | . . . . . . . . . 10 ⊢ (𝐵 ⊆ On → Ord ∪ 𝐵) | |
12 | 10, 11 | syl6 35 | . . . . . . . . 9 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → Ord ∪ 𝐵)) |
13 | 12, 6 | jctird 523 | . . . . . . . 8 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → (Ord ∪ 𝐵 ∧ Ord 𝐴))) |
14 | ordsseleq 5970 | . . . . . . . 8 ⊢ ((Ord ∪ 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴))) | |
15 | 13, 14 | syl6 35 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴)))) |
16 | 15 | imp 396 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴))) |
17 | 5, 16 | mpbid 224 | . . . . 5 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴)) |
18 | 17 | ord 891 | . . . 4 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∪ 𝐵 ∈ 𝐴 → ∪ 𝐵 = 𝐴)) |
19 | cfslb.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
20 | 19 | cfslb 9376 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵) |
21 | domnsym 8328 | . . . . . 6 ⊢ ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴)) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴) → ¬ 𝐵 ≺ (cf‘𝐴)) |
23 | 22 | 3expia 1151 | . . . 4 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴))) |
24 | 18, 23 | syld 47 | . . 3 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∪ 𝐵 ∈ 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴))) |
25 | 24 | con4d 115 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ≺ (cf‘𝐴) → ∪ 𝐵 ∈ 𝐴)) |
26 | 25 | 3impia 1146 | 1 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ (cf‘𝐴)) → ∪ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ⊆ wss 3769 ∪ cuni 4628 class class class wbr 4843 Ord word 5940 Oncon0 5941 Lim wlim 5942 ‘cfv 6101 ≼ cdom 8193 ≺ csdm 8194 cfccf 9049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-wrecs 7645 df-recs 7707 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-card 9051 df-cf 9053 |
This theorem is referenced by: cfslb2n 9378 |
Copyright terms: Public domain | W3C validator |