![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfslbn | Structured version Visualization version GIF version |
Description: Any subset of 𝐴 smaller than its cofinality has union less than 𝐴. (This is the contrapositive to cfslb 10335.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
cfslb.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cfslbn | ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ (cf‘𝐴)) → ∪ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4939 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴) | |
2 | limuni 6456 | . . . . . . . . 9 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
3 | 2 | sseq2d 4041 | . . . . . . . 8 ⊢ (Lim 𝐴 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ ∪ 𝐴)) |
4 | 1, 3 | imbitrrid 246 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴)) |
5 | 4 | imp 406 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∪ 𝐵 ⊆ 𝐴) |
6 | limord 6455 | . . . . . . . . . . . 12 ⊢ (Lim 𝐴 → Ord 𝐴) | |
7 | ordsson 7818 | . . . . . . . . . . . 12 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
8 | 6, 7 | syl 17 | . . . . . . . . . . 11 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
9 | sstr2 4015 | . . . . . . . . . . 11 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On)) | |
10 | 8, 9 | syl5com 31 | . . . . . . . . . 10 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → 𝐵 ⊆ On)) |
11 | ssorduni 7814 | . . . . . . . . . 10 ⊢ (𝐵 ⊆ On → Ord ∪ 𝐵) | |
12 | 10, 11 | syl6 35 | . . . . . . . . 9 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → Ord ∪ 𝐵)) |
13 | 12, 6 | jctird 526 | . . . . . . . 8 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → (Ord ∪ 𝐵 ∧ Ord 𝐴))) |
14 | ordsseleq 6424 | . . . . . . . 8 ⊢ ((Ord ∪ 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴))) | |
15 | 13, 14 | syl6 35 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴)))) |
16 | 15 | imp 406 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴))) |
17 | 5, 16 | mpbid 232 | . . . . 5 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴)) |
18 | 17 | ord 863 | . . . 4 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∪ 𝐵 ∈ 𝐴 → ∪ 𝐵 = 𝐴)) |
19 | cfslb.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
20 | 19 | cfslb 10335 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵) |
21 | domnsym 9165 | . . . . . 6 ⊢ ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴)) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴) → ¬ 𝐵 ≺ (cf‘𝐴)) |
23 | 22 | 3expia 1121 | . . . 4 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴))) |
24 | 18, 23 | syld 47 | . . 3 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∪ 𝐵 ∈ 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴))) |
25 | 24 | con4d 115 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ≺ (cf‘𝐴) → ∪ 𝐵 ∈ 𝐴)) |
26 | 25 | 3impia 1117 | 1 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ (cf‘𝐴)) → ∪ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∪ cuni 4931 class class class wbr 5166 Ord word 6394 Oncon0 6395 Lim wlim 6396 ‘cfv 6573 ≼ cdom 9001 ≺ csdm 9002 cfccf 10006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-card 10008 df-cf 10010 |
This theorem is referenced by: cfslb2n 10337 |
Copyright terms: Public domain | W3C validator |