MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslbn Structured version   Visualization version   GIF version

Theorem cfslbn 10023
Description: Any subset of 𝐴 smaller than its cofinality has union less than 𝐴. (This is the contrapositive to cfslb 10022.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslbn ((Lim 𝐴𝐵𝐴𝐵 ≺ (cf‘𝐴)) → 𝐵𝐴)

Proof of Theorem cfslbn
StepHypRef Expression
1 uniss 4847 . . . . . . . 8 (𝐵𝐴 𝐵 𝐴)
2 limuni 6326 . . . . . . . . 9 (Lim 𝐴𝐴 = 𝐴)
32sseq2d 3953 . . . . . . . 8 (Lim 𝐴 → ( 𝐵𝐴 𝐵 𝐴))
41, 3syl5ibr 245 . . . . . . 7 (Lim 𝐴 → (𝐵𝐴 𝐵𝐴))
54imp 407 . . . . . 6 ((Lim 𝐴𝐵𝐴) → 𝐵𝐴)
6 limord 6325 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
7 ordsson 7633 . . . . . . . . . . . 12 (Ord 𝐴𝐴 ⊆ On)
86, 7syl 17 . . . . . . . . . . 11 (Lim 𝐴𝐴 ⊆ On)
9 sstr2 3928 . . . . . . . . . . 11 (𝐵𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On))
108, 9syl5com 31 . . . . . . . . . 10 (Lim 𝐴 → (𝐵𝐴𝐵 ⊆ On))
11 ssorduni 7629 . . . . . . . . . 10 (𝐵 ⊆ On → Ord 𝐵)
1210, 11syl6 35 . . . . . . . . 9 (Lim 𝐴 → (𝐵𝐴 → Ord 𝐵))
1312, 6jctird 527 . . . . . . . 8 (Lim 𝐴 → (𝐵𝐴 → (Ord 𝐵 ∧ Ord 𝐴)))
14 ordsseleq 6295 . . . . . . . 8 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴)))
1513, 14syl6 35 . . . . . . 7 (Lim 𝐴 → (𝐵𝐴 → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴))))
1615imp 407 . . . . . 6 ((Lim 𝐴𝐵𝐴) → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴)))
175, 16mpbid 231 . . . . 5 ((Lim 𝐴𝐵𝐴) → ( 𝐵𝐴 𝐵 = 𝐴))
1817ord 861 . . . 4 ((Lim 𝐴𝐵𝐴) → (¬ 𝐵𝐴 𝐵 = 𝐴))
19 cfslb.1 . . . . . . 7 𝐴 ∈ V
2019cfslb 10022 . . . . . 6 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)
21 domnsym 8886 . . . . . 6 ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴))
2220, 21syl 17 . . . . 5 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → ¬ 𝐵 ≺ (cf‘𝐴))
23223expia 1120 . . . 4 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
2418, 23syld 47 . . 3 ((Lim 𝐴𝐵𝐴) → (¬ 𝐵𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
2524con4d 115 . 2 ((Lim 𝐴𝐵𝐴) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
26253impia 1116 1 ((Lim 𝐴𝐵𝐴𝐵 ≺ (cf‘𝐴)) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   cuni 4839   class class class wbr 5074  Ord word 6265  Oncon0 6266  Lim wlim 6267  cfv 6433  cdom 8731  csdm 8732  cfccf 9695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-card 9697  df-cf 9699
This theorem is referenced by:  cfslb2n  10024
  Copyright terms: Public domain W3C validator