MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslbn Structured version   Visualization version   GIF version

Theorem cfslbn 10336
Description: Any subset of 𝐴 smaller than its cofinality has union less than 𝐴. (This is the contrapositive to cfslb 10335.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1 𝐴 ∈ V
Assertion
Ref Expression
cfslbn ((Lim 𝐴𝐵𝐴𝐵 ≺ (cf‘𝐴)) → 𝐵𝐴)

Proof of Theorem cfslbn
StepHypRef Expression
1 uniss 4939 . . . . . . . 8 (𝐵𝐴 𝐵 𝐴)
2 limuni 6456 . . . . . . . . 9 (Lim 𝐴𝐴 = 𝐴)
32sseq2d 4041 . . . . . . . 8 (Lim 𝐴 → ( 𝐵𝐴 𝐵 𝐴))
41, 3imbitrrid 246 . . . . . . 7 (Lim 𝐴 → (𝐵𝐴 𝐵𝐴))
54imp 406 . . . . . 6 ((Lim 𝐴𝐵𝐴) → 𝐵𝐴)
6 limord 6455 . . . . . . . . . . . 12 (Lim 𝐴 → Ord 𝐴)
7 ordsson 7818 . . . . . . . . . . . 12 (Ord 𝐴𝐴 ⊆ On)
86, 7syl 17 . . . . . . . . . . 11 (Lim 𝐴𝐴 ⊆ On)
9 sstr2 4015 . . . . . . . . . . 11 (𝐵𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On))
108, 9syl5com 31 . . . . . . . . . 10 (Lim 𝐴 → (𝐵𝐴𝐵 ⊆ On))
11 ssorduni 7814 . . . . . . . . . 10 (𝐵 ⊆ On → Ord 𝐵)
1210, 11syl6 35 . . . . . . . . 9 (Lim 𝐴 → (𝐵𝐴 → Ord 𝐵))
1312, 6jctird 526 . . . . . . . 8 (Lim 𝐴 → (𝐵𝐴 → (Ord 𝐵 ∧ Ord 𝐴)))
14 ordsseleq 6424 . . . . . . . 8 ((Ord 𝐵 ∧ Ord 𝐴) → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴)))
1513, 14syl6 35 . . . . . . 7 (Lim 𝐴 → (𝐵𝐴 → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴))))
1615imp 406 . . . . . 6 ((Lim 𝐴𝐵𝐴) → ( 𝐵𝐴 ↔ ( 𝐵𝐴 𝐵 = 𝐴)))
175, 16mpbid 232 . . . . 5 ((Lim 𝐴𝐵𝐴) → ( 𝐵𝐴 𝐵 = 𝐴))
1817ord 863 . . . 4 ((Lim 𝐴𝐵𝐴) → (¬ 𝐵𝐴 𝐵 = 𝐴))
19 cfslb.1 . . . . . . 7 𝐴 ∈ V
2019cfslb 10335 . . . . . 6 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵)
21 domnsym 9165 . . . . . 6 ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴))
2220, 21syl 17 . . . . 5 ((Lim 𝐴𝐵𝐴 𝐵 = 𝐴) → ¬ 𝐵 ≺ (cf‘𝐴))
23223expia 1121 . . . 4 ((Lim 𝐴𝐵𝐴) → ( 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
2418, 23syld 47 . . 3 ((Lim 𝐴𝐵𝐴) → (¬ 𝐵𝐴 → ¬ 𝐵 ≺ (cf‘𝐴)))
2524con4d 115 . 2 ((Lim 𝐴𝐵𝐴) → (𝐵 ≺ (cf‘𝐴) → 𝐵𝐴))
26253impia 1117 1 ((Lim 𝐴𝐵𝐴𝐵 ≺ (cf‘𝐴)) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   cuni 4931   class class class wbr 5166  Ord word 6394  Oncon0 6395  Lim wlim 6396  cfv 6573  cdom 9001  csdm 9002  cfccf 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-card 10008  df-cf 10010
This theorem is referenced by:  cfslb2n  10337
  Copyright terms: Public domain W3C validator