Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfslbn | Structured version Visualization version GIF version |
Description: Any subset of 𝐴 smaller than its cofinality has union less than 𝐴. (This is the contrapositive to cfslb 9953.) (Contributed by Mario Carneiro, 24-Jun-2013.) |
Ref | Expression |
---|---|
cfslb.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cfslbn | ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ (cf‘𝐴)) → ∪ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss 4844 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ ∪ 𝐴) | |
2 | limuni 6311 | . . . . . . . . 9 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
3 | 2 | sseq2d 3949 | . . . . . . . 8 ⊢ (Lim 𝐴 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ ∪ 𝐴)) |
4 | 1, 3 | syl5ibr 245 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴)) |
5 | 4 | imp 406 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → ∪ 𝐵 ⊆ 𝐴) |
6 | limord 6310 | . . . . . . . . . . . 12 ⊢ (Lim 𝐴 → Ord 𝐴) | |
7 | ordsson 7610 | . . . . . . . . . . . 12 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
8 | 6, 7 | syl 17 | . . . . . . . . . . 11 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
9 | sstr2 3924 | . . . . . . . . . . 11 ⊢ (𝐵 ⊆ 𝐴 → (𝐴 ⊆ On → 𝐵 ⊆ On)) | |
10 | 8, 9 | syl5com 31 | . . . . . . . . . 10 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → 𝐵 ⊆ On)) |
11 | ssorduni 7606 | . . . . . . . . . 10 ⊢ (𝐵 ⊆ On → Ord ∪ 𝐵) | |
12 | 10, 11 | syl6 35 | . . . . . . . . 9 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → Ord ∪ 𝐵)) |
13 | 12, 6 | jctird 526 | . . . . . . . 8 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → (Ord ∪ 𝐵 ∧ Ord 𝐴))) |
14 | ordsseleq 6280 | . . . . . . . 8 ⊢ ((Ord ∪ 𝐵 ∧ Ord 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴))) | |
15 | 13, 14 | syl6 35 | . . . . . . 7 ⊢ (Lim 𝐴 → (𝐵 ⊆ 𝐴 → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴)))) |
16 | 15 | imp 406 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 ⊆ 𝐴 ↔ (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴))) |
17 | 5, 16 | mpbid 231 | . . . . 5 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 ∈ 𝐴 ∨ ∪ 𝐵 = 𝐴)) |
18 | 17 | ord 860 | . . . 4 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∪ 𝐵 ∈ 𝐴 → ∪ 𝐵 = 𝐴)) |
19 | cfslb.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
20 | 19 | cfslb 9953 | . . . . . 6 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴) → (cf‘𝐴) ≼ 𝐵) |
21 | domnsym 8839 | . . . . . 6 ⊢ ((cf‘𝐴) ≼ 𝐵 → ¬ 𝐵 ≺ (cf‘𝐴)) | |
22 | 20, 21 | syl 17 | . . . . 5 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ ∪ 𝐵 = 𝐴) → ¬ 𝐵 ≺ (cf‘𝐴)) |
23 | 22 | 3expia 1119 | . . . 4 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝐵 = 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴))) |
24 | 18, 23 | syld 47 | . . 3 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (¬ ∪ 𝐵 ∈ 𝐴 → ¬ 𝐵 ≺ (cf‘𝐴))) |
25 | 24 | con4d 115 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ≺ (cf‘𝐴) → ∪ 𝐵 ∈ 𝐴)) |
26 | 25 | 3impia 1115 | 1 ⊢ ((Lim 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≺ (cf‘𝐴)) → ∪ 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 Ord word 6250 Oncon0 6251 Lim wlim 6252 ‘cfv 6418 ≼ cdom 8689 ≺ csdm 8690 cfccf 9626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-card 9628 df-cf 9630 |
This theorem is referenced by: cfslb2n 9955 |
Copyright terms: Public domain | W3C validator |