| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hbtlem6.r | . . 3
⊢ (𝜑 → 𝑅 ∈ LNoeR) | 
| 2 |  | lnrring 43129 | . . . . 5
⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) | 
| 3 | 1, 2 | syl 17 | . . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 4 |  | hbtlem6.i | . . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑈) | 
| 5 |  | hbtlem6.x | . . . 4
⊢ (𝜑 → 𝑋 ∈
ℕ0) | 
| 6 |  | hbtlem.p | . . . . 5
⊢ 𝑃 = (Poly1‘𝑅) | 
| 7 |  | hbtlem.u | . . . . 5
⊢ 𝑈 = (LIdeal‘𝑃) | 
| 8 |  | hbtlem.s | . . . . 5
⊢ 𝑆 = (ldgIdlSeq‘𝑅) | 
| 9 |  | eqid 2736 | . . . . 5
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) | 
| 10 | 6, 7, 8, 9 | hbtlem2 43141 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) | 
| 11 | 3, 4, 5, 10 | syl3anc 1372 | . . 3
⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) | 
| 12 |  | eqid 2736 | . . . 4
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) | 
| 13 | 9, 12 | lnr2i 43133 | . . 3
⊢ ((𝑅 ∈ LNoeR ∧ ((𝑆‘𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) → ∃𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎)) | 
| 14 | 1, 11, 13 | syl2anc 584 | . 2
⊢ (𝜑 → ∃𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎)) | 
| 15 |  | elfpw 9395 | . . . . 5
⊢ (𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin) ↔ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) | 
| 16 |  | fvex 6918 | . . . . . . . . 9
⊢
((coe1‘𝑏)‘𝑋) ∈ V | 
| 17 |  | eqid 2736 | . . . . . . . . 9
⊢ (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) | 
| 18 | 16, 17 | fnmpti 6710 | . . . . . . . 8
⊢ (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) Fn {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} | 
| 19 | 18 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) Fn {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}) | 
| 20 |  | simprl 770 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ((𝑆‘𝐼)‘𝑋)) | 
| 21 |  | eqid 2736 | . . . . . . . . . . . 12
⊢
(deg1‘𝑅) = (deg1‘𝑅) | 
| 22 | 6, 7, 8, 21 | hbtlem1 43140 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))}) | 
| 23 | 1, 4, 5, 22 | syl3anc 1372 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))}) | 
| 24 | 17 | rnmpt 5967 | . . . . . . . . . . 11
⊢ ran
(𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1‘𝑏)‘𝑋)} | 
| 25 |  | fveq2 6905 | . . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → ((deg1‘𝑅)‘𝑐) = ((deg1‘𝑅)‘𝑏)) | 
| 26 | 25 | breq1d 5152 | . . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → (((deg1‘𝑅)‘𝑐) ≤ 𝑋 ↔ ((deg1‘𝑅)‘𝑏) ≤ 𝑋)) | 
| 27 | 26 | rexrab 3701 | . . . . . . . . . . . 12
⊢
(∃𝑏 ∈
{𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1‘𝑏)‘𝑋) ↔ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))) | 
| 28 | 27 | abbii 2808 | . . . . . . . . . . 11
⊢ {𝑑 ∣ ∃𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1‘𝑏)‘𝑋)} = {𝑑 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))} | 
| 29 | 24, 28 | eqtri 2764 | . . . . . . . . . 10
⊢ ran
(𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ 𝐼 (((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))} | 
| 30 | 23, 29 | eqtr4di 2794 | . . . . . . . . 9
⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) | 
| 31 | 30 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑆‘𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) | 
| 32 | 20, 31 | sseqtrd 4019 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ran (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) | 
| 33 |  | simprr 772 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ∈ Fin) | 
| 34 |  | fipreima 9399 | . . . . . . 7
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) Fn {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑎 ⊆ ran (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ∧ 𝑎 ∈ Fin) → ∃𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎) | 
| 35 | 19, 32, 33, 34 | syl3anc 1372 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎) | 
| 36 |  | elfpw 9395 | . . . . . . . . . 10
⊢ (𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ↔ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) | 
| 37 |  | ssrab2 4079 | . . . . . . . . . . . . . . . . 17
⊢ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼 | 
| 38 |  | sstr2 3989 | . . . . . . . . . . . . . . . . 17
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} → ({𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼 → 𝑘 ⊆ 𝐼)) | 
| 39 | 37, 38 | mpi 20 | . . . . . . . . . . . . . . . 16
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} → 𝑘 ⊆ 𝐼) | 
| 40 | 39 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ⊆ 𝐼) | 
| 41 |  | velpw 4604 | . . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝒫 𝐼 ↔ 𝑘 ⊆ 𝐼) | 
| 42 | 40, 41 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ∈ 𝒫 𝐼) | 
| 43 | 42 | adantrr 717 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ 𝒫 𝐼) | 
| 44 |  | simprr 772 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ Fin) | 
| 45 | 43, 44 | elind 4199 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ (𝒫 𝐼 ∩ Fin)) | 
| 46 | 3 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑅 ∈ Ring) | 
| 47 | 6 | ply1ring 22250 | . . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 48 | 3, 47 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ Ring) | 
| 49 | 48 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑃 ∈ Ring) | 
| 50 |  | simprl 770 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}) | 
| 51 | 50, 37 | sstrdi 3995 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ 𝐼) | 
| 52 |  | eqid 2736 | . . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 53 | 52, 7 | lidlss 21223 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) | 
| 54 | 4, 53 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑃)) | 
| 55 | 54 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝐼 ⊆ (Base‘𝑃)) | 
| 56 | 51, 55 | sstrd 3993 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (Base‘𝑃)) | 
| 57 |  | hbtlem6.n | . . . . . . . . . . . . . . . 16
⊢ 𝑁 = (RSpan‘𝑃) | 
| 58 | 57, 52, 7 | rspcl 21246 | . . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → (𝑁‘𝑘) ∈ 𝑈) | 
| 59 | 49, 56, 58 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑁‘𝑘) ∈ 𝑈) | 
| 60 | 5 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑋 ∈
ℕ0) | 
| 61 | 6, 7, 8, 9 | hbtlem2 43141 | . . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑘) ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘(𝑁‘𝑘))‘𝑋) ∈ (LIdeal‘𝑅)) | 
| 62 | 46, 59, 60, 61 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁‘𝑘))‘𝑋) ∈ (LIdeal‘𝑅)) | 
| 63 |  | df-ima 5697 | . . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = ran ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) | 
| 64 | 57, 52 | rspssid 21247 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → 𝑘 ⊆ (𝑁‘𝑘)) | 
| 65 | 49, 56, 64 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (𝑁‘𝑘)) | 
| 66 |  | ssrab 4072 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ 𝐼 ∧ ∀𝑐 ∈ 𝑘 ((deg1‘𝑅)‘𝑐) ≤ 𝑋)) | 
| 67 | 66 | simprbi 496 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} → ∀𝑐 ∈ 𝑘 ((deg1‘𝑅)‘𝑐) ≤ 𝑋) | 
| 68 | 67 | ad2antrl 728 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ∀𝑐 ∈ 𝑘 ((deg1‘𝑅)‘𝑐) ≤ 𝑋) | 
| 69 |  | ssrab 4072 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ⊆ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ (𝑁‘𝑘) ∧ ∀𝑐 ∈ 𝑘 ((deg1‘𝑅)‘𝑐) ≤ 𝑋)) | 
| 70 | 65, 68, 69 | sylanbrc 583 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}) | 
| 71 | 70 | resmptd 6057 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) = (𝑏 ∈ 𝑘 ↦ ((coe1‘𝑏)‘𝑋))) | 
| 72 |  | resmpt 6054 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) = (𝑏 ∈ 𝑘 ↦ ((coe1‘𝑏)‘𝑋))) | 
| 73 | 72 | ad2antrl 728 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) = (𝑏 ∈ 𝑘 ↦ ((coe1‘𝑏)‘𝑋))) | 
| 74 | 71, 73 | eqtr4d 2779 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) = ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘)) | 
| 75 |  | resss 6018 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) | 
| 76 | 74, 75 | eqsstrrdi 4028 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) | 
| 77 |  | rnss 5949 | . . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) → ran ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) | 
| 78 | 76, 77 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ran ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) | 
| 79 | 63, 78 | eqsstrid 4021 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) | 
| 80 | 6, 7, 8, 21 | hbtlem1 43140 | . . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑘) ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘(𝑁‘𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁‘𝑘)(((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))}) | 
| 81 | 46, 59, 60, 80 | syl3anc 1372 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁‘𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁‘𝑘)(((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))}) | 
| 82 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) | 
| 83 | 82 | rnmpt 5967 | . . . . . . . . . . . . . . . 16
⊢ ran
(𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1‘𝑏)‘𝑋)} | 
| 84 | 26 | rexrab 3701 | . . . . . . . . . . . . . . . . 17
⊢
(∃𝑏 ∈
{𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1‘𝑏)‘𝑋) ↔ ∃𝑏 ∈ (𝑁‘𝑘)(((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))) | 
| 85 | 84 | abbii 2808 | . . . . . . . . . . . . . . . 16
⊢ {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1‘𝑏)‘𝑋)} = {𝑒 ∣ ∃𝑏 ∈ (𝑁‘𝑘)(((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))} | 
| 86 | 83, 85 | eqtri 2764 | . . . . . . . . . . . . . . 15
⊢ ran
(𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ (𝑁‘𝑘)(((deg1‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))} | 
| 87 | 81, 86 | eqtr4di 2794 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁‘𝑘))‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) | 
| 88 | 79, 87 | sseqtrrd 4020 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | 
| 89 | 12, 9 | rspssp 21250 | . . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ ((𝑆‘(𝑁‘𝑘))‘𝑋) ∈ (LIdeal‘𝑅) ∧ ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | 
| 90 | 46, 62, 88, 89 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | 
| 91 | 45, 90 | jca 511 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) | 
| 92 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) = ((RSpan‘𝑅)‘𝑎)) | 
| 93 | 92 | sseq1d 4014 | . . . . . . . . . . . 12
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) | 
| 94 | 93 | anbi2d 630 | . . . . . . . . . . 11
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) ↔ (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) | 
| 95 | 91, 94 | syl5ibcom 245 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) | 
| 96 | 36, 95 | sylan2b 594 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)) → (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) | 
| 97 | 96 | expimpd 453 | . . . . . . . 8
⊢ (𝜑 → ((𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) | 
| 98 | 97 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) | 
| 99 | 98 | reximdv2 3163 | . . . . . 6
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (∃𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ ((deg1‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) | 
| 100 | 35, 99 | mpd 15 | . . . . 5
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | 
| 101 | 15, 100 | sylan2b 594 | . . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | 
| 102 |  | sseq1 4008 | . . . . 5
⊢ (((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) | 
| 103 | 102 | rexbidv 3178 | . . . 4
⊢ (((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋) ↔ ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) | 
| 104 | 101, 103 | syl5ibrcom 247 | . . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)) → (((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) | 
| 105 | 104 | rexlimdva 3154 | . 2
⊢ (𝜑 → (∃𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) | 
| 106 | 14, 105 | mpd 15 | 1
⊢ (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) |