Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem6 Structured version   Visualization version   GIF version

Theorem hbtlem6 39131
Description: There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem6.n 𝑁 = (RSpan‘𝑃)
hbtlem6.r (𝜑𝑅 ∈ LNoeR)
hbtlem6.i (𝜑𝐼𝑈)
hbtlem6.x (𝜑𝑋 ∈ ℕ0)
Assertion
Ref Expression
hbtlem6 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑅,𝑘   𝑆,𝑘   𝑘,𝑋
Allowed substitution hints:   𝑃(𝑘)   𝑈(𝑘)   𝑁(𝑘)

Proof of Theorem hbtlem6
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem6.r . . 3 (𝜑𝑅 ∈ LNoeR)
2 lnrring 39114 . . . . 5 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
4 hbtlem6.i . . . 4 (𝜑𝐼𝑈)
5 hbtlem6.x . . . 4 (𝜑𝑋 ∈ ℕ0)
6 hbtlem.p . . . . 5 𝑃 = (Poly1𝑅)
7 hbtlem.u . . . . 5 𝑈 = (LIdeal‘𝑃)
8 hbtlem.s . . . . 5 𝑆 = (ldgIdlSeq‘𝑅)
9 eqid 2778 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
106, 7, 8, 9hbtlem2 39126 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
113, 4, 5, 10syl3anc 1351 . . 3 (𝜑 → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
12 eqid 2778 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
139, 12lnr2i 39118 . . 3 ((𝑅 ∈ LNoeR ∧ ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
141, 11, 13syl2anc 576 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
15 elfpw 8621 . . . . 5 (𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin) ↔ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin))
16 fvex 6512 . . . . . . . . 9 ((coe1𝑏)‘𝑋) ∈ V
17 eqid 2778 . . . . . . . . 9 (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
1816, 17fnmpti 6321 . . . . . . . 8 (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}
1918a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
20 simprl 758 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ((𝑆𝐼)‘𝑋))
21 eqid 2778 . . . . . . . . . . . 12 ( deg1𝑅) = ( deg1𝑅)
226, 7, 8, 21hbtlem1 39125 . . . . . . . . . . 11 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
231, 4, 5, 22syl3anc 1351 . . . . . . . . . 10 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
2417rnmpt 5670 . . . . . . . . . . 11 ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)}
25 fveq2 6499 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (( deg1𝑅)‘𝑐) = (( deg1𝑅)‘𝑏))
2625breq1d 4939 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((( deg1𝑅)‘𝑐) ≤ 𝑋 ↔ (( deg1𝑅)‘𝑏) ≤ 𝑋))
2726rexrab 3603 . . . . . . . . . . . 12 (∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)))
2827abbii 2844 . . . . . . . . . . 11 {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)} = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
2924, 28eqtri 2802 . . . . . . . . . 10 ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
3023, 29syl6eqr 2832 . . . . . . . . 9 (𝜑 → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3130adantr 473 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3220, 31sseqtrd 3897 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
33 simprr 760 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ∈ Fin)
34 fipreima 8625 . . . . . . 7 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ∧ 𝑎 ∈ Fin) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
3519, 32, 33, 34syl3anc 1351 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
36 elfpw 8621 . . . . . . . . . 10 (𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ↔ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin))
37 ssrab2 3946 . . . . . . . . . . . . . . . . 17 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼
38 sstr2 3865 . . . . . . . . . . . . . . . . 17 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ({𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼𝑘𝐼))
3937, 38mpi 20 . . . . . . . . . . . . . . . 16 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → 𝑘𝐼)
4039adantl 474 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘𝐼)
41 selpw 4429 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 𝐼𝑘𝐼)
4240, 41sylibr 226 . . . . . . . . . . . . . 14 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ∈ 𝒫 𝐼)
4342adantrr 704 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ 𝒫 𝐼)
44 simprr 760 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ Fin)
4543, 44elind 4059 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ (𝒫 𝐼 ∩ Fin))
463adantr 473 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑅 ∈ Ring)
476ply1ring 20119 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
483, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
4948adantr 473 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑃 ∈ Ring)
50 simprl 758 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
5150, 37syl6ss 3870 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘𝐼)
52 eqid 2778 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
5352, 7lidlss 19704 . . . . . . . . . . . . . . . . . 18 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
544, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ⊆ (Base‘𝑃))
5554adantr 473 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝐼 ⊆ (Base‘𝑃))
5651, 55sstrd 3868 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (Base‘𝑃))
57 hbtlem6.n . . . . . . . . . . . . . . . 16 𝑁 = (RSpan‘𝑃)
5857, 52, 7rspcl 19716 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → (𝑁𝑘) ∈ 𝑈)
5949, 56, 58syl2anc 576 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑁𝑘) ∈ 𝑈)
605adantr 473 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑋 ∈ ℕ0)
616, 7, 8, 9hbtlem2 39126 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
6246, 59, 60, 61syl3anc 1351 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
63 df-ima 5420 . . . . . . . . . . . . . . 15 ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘)
6457, 52rspssid 19717 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → 𝑘 ⊆ (𝑁𝑘))
6549, 56, 64syl2anc 576 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (𝑁𝑘))
66 ssrab 3939 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘𝐼 ∧ ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋))
6766simprbi 489 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋)
6867ad2antrl 715 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋)
69 ssrab 3939 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ (𝑁𝑘) ∧ ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋))
7065, 68, 69sylanbrc 575 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
7170resmptd 5753 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
72 resmpt 5750 . . . . . . . . . . . . . . . . . . 19 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7372ad2antrl 715 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7471, 73eqtr4d 2817 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘))
75 resss 5723 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
7674, 75syl6eqssr 3912 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
77 rnss 5652 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7876, 77syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7963, 78syl5eqss 3905 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
806, 7, 8, 21hbtlem1 39125 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
8146, 59, 60, 80syl3anc 1351 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
82 eqid 2778 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
8382rnmpt 5670 . . . . . . . . . . . . . . . 16 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)}
8426rexrab 3603 . . . . . . . . . . . . . . . . 17 (∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)))
8584abbii 2844 . . . . . . . . . . . . . . . 16 {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)} = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8683, 85eqtri 2802 . . . . . . . . . . . . . . 15 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8781, 86syl6eqr 2832 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
8879, 87sseqtr4d 3898 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
8912, 9rspssp 19720 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9046, 62, 88, 89syl3anc 1351 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9145, 90jca 504 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
92 fveq2 6499 . . . . . . . . . . . . 13 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) = ((RSpan‘𝑅)‘𝑎))
9392sseq1d 3888 . . . . . . . . . . . 12 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
9493anbi2d 619 . . . . . . . . . . 11 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) ↔ (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9591, 94syl5ibcom 237 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9636, 95sylan2b 584 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9796expimpd 446 . . . . . . . 8 (𝜑 → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9897adantr 473 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9998reximdv2 3216 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10035, 99mpd 15 . . . . 5 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
10115, 100sylan2b 584 . . . 4 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
102 sseq1 3882 . . . . 5 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
103102rexbidv 3242 . . . 4 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
104101, 103syl5ibrcom 239 . . 3 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
105104rexlimdva 3229 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10614, 105mpd 15 1 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  {cab 2758  wral 3088  wrex 3089  {crab 3092  cin 3828  wss 3829  𝒫 cpw 4422   class class class wbr 4929  cmpt 5008  ran crn 5408  cres 5409  cima 5410   Fn wfn 6183  cfv 6188  Fincfn 8306  cle 10475  0cn0 11707  Basecbs 16339  Ringcrg 19020  LIdealclidl 19664  RSpancrsp 19665  Poly1cpl1 20048  coe1cco1 20049   deg1 cdg1 24351  LNoeRclnr 39111  ldgIdlSeqcldgis 39123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-ofr 7228  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-sup 8701  df-oi 8769  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-fz 12709  df-fzo 12850  df-seq 13185  df-hash 13506  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-0g 16571  df-gsum 16572  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-mhm 17803  df-submnd 17804  df-grp 17894  df-minusg 17895  df-sbg 17896  df-mulg 18012  df-subg 18060  df-ghm 18127  df-cntz 18218  df-cmn 18668  df-abl 18669  df-mgp 18963  df-ur 18975  df-ring 19022  df-cring 19023  df-subrg 19256  df-lmod 19358  df-lss 19426  df-lsp 19466  df-sra 19666  df-rgmod 19667  df-lidl 19668  df-rsp 19669  df-ascl 19808  df-psr 19850  df-mvr 19851  df-mpl 19852  df-opsr 19854  df-psr1 20051  df-vr1 20052  df-ply1 20053  df-coe1 20054  df-cnfld 20248  df-mdeg 24352  df-deg1 24353  df-lfig 39070  df-lnm 39078  df-lnr 39112  df-ldgis 39124
This theorem is referenced by:  hbt  39132
  Copyright terms: Public domain W3C validator