Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem6 Structured version   Visualization version   GIF version

Theorem hbtlem6 43128
Description: There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem6.n 𝑁 = (RSpan‘𝑃)
hbtlem6.r (𝜑𝑅 ∈ LNoeR)
hbtlem6.i (𝜑𝐼𝑈)
hbtlem6.x (𝜑𝑋 ∈ ℕ0)
Assertion
Ref Expression
hbtlem6 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑅,𝑘   𝑆,𝑘   𝑘,𝑋
Allowed substitution hints:   𝑃(𝑘)   𝑈(𝑘)   𝑁(𝑘)

Proof of Theorem hbtlem6
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem6.r . . 3 (𝜑𝑅 ∈ LNoeR)
2 lnrring 43111 . . . . 5 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
4 hbtlem6.i . . . 4 (𝜑𝐼𝑈)
5 hbtlem6.x . . . 4 (𝜑𝑋 ∈ ℕ0)
6 hbtlem.p . . . . 5 𝑃 = (Poly1𝑅)
7 hbtlem.u . . . . 5 𝑈 = (LIdeal‘𝑃)
8 hbtlem.s . . . . 5 𝑆 = (ldgIdlSeq‘𝑅)
9 eqid 2736 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
106, 7, 8, 9hbtlem2 43123 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
113, 4, 5, 10syl3anc 1373 . . 3 (𝜑 → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
12 eqid 2736 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
139, 12lnr2i 43115 . . 3 ((𝑅 ∈ LNoeR ∧ ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
141, 11, 13syl2anc 584 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
15 elfpw 9371 . . . . 5 (𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin) ↔ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin))
16 fvex 6894 . . . . . . . . 9 ((coe1𝑏)‘𝑋) ∈ V
17 eqid 2736 . . . . . . . . 9 (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
1816, 17fnmpti 6686 . . . . . . . 8 (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}
1918a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋})
20 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ((𝑆𝐼)‘𝑋))
21 eqid 2736 . . . . . . . . . . . 12 (deg1𝑅) = (deg1𝑅)
226, 7, 8, 21hbtlem1 43122 . . . . . . . . . . 11 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
231, 4, 5, 22syl3anc 1373 . . . . . . . . . 10 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
2417rnmpt 5942 . . . . . . . . . . 11 ran (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)}
25 fveq2 6881 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → ((deg1𝑅)‘𝑐) = ((deg1𝑅)‘𝑏))
2625breq1d 5134 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → (((deg1𝑅)‘𝑐) ≤ 𝑋 ↔ ((deg1𝑅)‘𝑏) ≤ 𝑋))
2726rexrab 3684 . . . . . . . . . . . 12 (∃𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)))
2827abbii 2803 . . . . . . . . . . 11 {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)} = {𝑑 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
2924, 28eqtri 2759 . . . . . . . . . 10 ran (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏𝐼 (((deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
3023, 29eqtr4di 2789 . . . . . . . . 9 (𝜑 → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3130adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3220, 31sseqtrd 4000 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
33 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ∈ Fin)
34 fipreima 9375 . . . . . . 7 (((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ∧ 𝑎 ∈ Fin) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
3519, 32, 33, 34syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
36 elfpw 9371 . . . . . . . . . 10 (𝑘 ∈ (𝒫 {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ↔ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin))
37 ssrab2 4060 . . . . . . . . . . . . . . . . 17 {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼
38 sstr2 3970 . . . . . . . . . . . . . . . . 17 (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} → ({𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼𝑘𝐼))
3937, 38mpi 20 . . . . . . . . . . . . . . . 16 (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} → 𝑘𝐼)
4039adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘𝐼)
41 velpw 4585 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 𝐼𝑘𝐼)
4240, 41sylibr 234 . . . . . . . . . . . . . 14 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ∈ 𝒫 𝐼)
4342adantrr 717 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ 𝒫 𝐼)
44 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ Fin)
4543, 44elind 4180 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ (𝒫 𝐼 ∩ Fin))
463adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑅 ∈ Ring)
476ply1ring 22188 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
483, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
4948adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑃 ∈ Ring)
50 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋})
5150, 37sstrdi 3976 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘𝐼)
52 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
5352, 7lidlss 21178 . . . . . . . . . . . . . . . . . 18 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
544, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ⊆ (Base‘𝑃))
5554adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝐼 ⊆ (Base‘𝑃))
5651, 55sstrd 3974 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (Base‘𝑃))
57 hbtlem6.n . . . . . . . . . . . . . . . 16 𝑁 = (RSpan‘𝑃)
5857, 52, 7rspcl 21201 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → (𝑁𝑘) ∈ 𝑈)
5949, 56, 58syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑁𝑘) ∈ 𝑈)
605adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑋 ∈ ℕ0)
616, 7, 8, 9hbtlem2 43123 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
6246, 59, 60, 61syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
63 df-ima 5672 . . . . . . . . . . . . . . 15 ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = ran ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘)
6457, 52rspssid 21202 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → 𝑘 ⊆ (𝑁𝑘))
6549, 56, 64syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (𝑁𝑘))
66 ssrab 4053 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘𝐼 ∧ ∀𝑐𝑘 ((deg1𝑅)‘𝑐) ≤ 𝑋))
6766simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} → ∀𝑐𝑘 ((deg1𝑅)‘𝑐) ≤ 𝑋)
6867ad2antrl 728 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ∀𝑐𝑘 ((deg1𝑅)‘𝑐) ≤ 𝑋)
69 ssrab 4053 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ (𝑁𝑘) ∧ ∀𝑐𝑘 ((deg1𝑅)‘𝑐) ≤ 𝑋))
7065, 68, 69sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋})
7170resmptd 6032 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
72 resmpt 6029 . . . . . . . . . . . . . . . . . . 19 (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} → ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7372ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7471, 73eqtr4d 2774 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘))
75 resss 5993 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
7674, 75eqsstrrdi 4009 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
77 rnss 5924 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7876, 77syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7963, 78eqsstrid 4002 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
806, 7, 8, 21hbtlem1 43122 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)(((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
8146, 59, 60, 80syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)(((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
82 eqid 2736 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
8382rnmpt 5942 . . . . . . . . . . . . . . . 16 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)}
8426rexrab 3684 . . . . . . . . . . . . . . . . 17 (∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏 ∈ (𝑁𝑘)(((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)))
8584abbii 2803 . . . . . . . . . . . . . . . 16 {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)} = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)(((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8683, 85eqtri 2759 . . . . . . . . . . . . . . 15 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)(((deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8781, 86eqtr4di 2789 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
8879, 87sseqtrrd 4001 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
8912, 9rspssp 21205 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9046, 62, 88, 89syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9145, 90jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
92 fveq2 6881 . . . . . . . . . . . . 13 (((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) = ((RSpan‘𝑅)‘𝑎))
9392sseq1d 3995 . . . . . . . . . . . 12 (((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
9493anbi2d 630 . . . . . . . . . . 11 (((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) ↔ (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9591, 94syl5ibcom 245 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9636, 95sylan2b 594 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝒫 {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9796expimpd 453 . . . . . . . 8 (𝜑 → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9897adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9998reximdv2 3151 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ ((deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10035, 99mpd 15 . . . . 5 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
10115, 100sylan2b 594 . . . 4 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
102 sseq1 3989 . . . . 5 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
103102rexbidv 3165 . . . 4 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
104101, 103syl5ibrcom 247 . . 3 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
105104rexlimdva 3142 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10614, 105mpd 15 1 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  {crab 3420  cin 3930  wss 3931  𝒫 cpw 4580   class class class wbr 5124  cmpt 5206  ran crn 5660  cres 5661  cima 5662   Fn wfn 6531  cfv 6536  Fincfn 8964  cle 11275  0cn0 12506  Basecbs 17233  Ringcrg 20198  LIdealclidl 21172  RSpancrsp 21173  Poly1cpl1 22117  coe1cco1 22118  deg1cdg1 26016  LNoeRclnr 43108  ldgIdlSeqcldgis 43120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175  df-cnfld 21321  df-ascl 21820  df-psr 21874  df-mvr 21875  df-mpl 21876  df-opsr 21878  df-psr1 22120  df-vr1 22121  df-ply1 22122  df-coe1 22123  df-mdeg 26017  df-deg1 26018  df-lfig 43067  df-lnm 43075  df-lnr 43109  df-ldgis 43121
This theorem is referenced by:  hbt  43129
  Copyright terms: Public domain W3C validator