Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem6 Structured version   Visualization version   GIF version

Theorem hbtlem6 40954
Description: There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem6.n 𝑁 = (RSpan‘𝑃)
hbtlem6.r (𝜑𝑅 ∈ LNoeR)
hbtlem6.i (𝜑𝐼𝑈)
hbtlem6.x (𝜑𝑋 ∈ ℕ0)
Assertion
Ref Expression
hbtlem6 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑅,𝑘   𝑆,𝑘   𝑘,𝑋
Allowed substitution hints:   𝑃(𝑘)   𝑈(𝑘)   𝑁(𝑘)

Proof of Theorem hbtlem6
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem6.r . . 3 (𝜑𝑅 ∈ LNoeR)
2 lnrring 40937 . . . . 5 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
4 hbtlem6.i . . . 4 (𝜑𝐼𝑈)
5 hbtlem6.x . . . 4 (𝜑𝑋 ∈ ℕ0)
6 hbtlem.p . . . . 5 𝑃 = (Poly1𝑅)
7 hbtlem.u . . . . 5 𝑈 = (LIdeal‘𝑃)
8 hbtlem.s . . . . 5 𝑆 = (ldgIdlSeq‘𝑅)
9 eqid 2738 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
106, 7, 8, 9hbtlem2 40949 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
113, 4, 5, 10syl3anc 1370 . . 3 (𝜑 → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
12 eqid 2738 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
139, 12lnr2i 40941 . . 3 ((𝑅 ∈ LNoeR ∧ ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
141, 11, 13syl2anc 584 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
15 elfpw 9121 . . . . 5 (𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin) ↔ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin))
16 fvex 6787 . . . . . . . . 9 ((coe1𝑏)‘𝑋) ∈ V
17 eqid 2738 . . . . . . . . 9 (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
1816, 17fnmpti 6576 . . . . . . . 8 (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}
1918a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
20 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ((𝑆𝐼)‘𝑋))
21 eqid 2738 . . . . . . . . . . . 12 ( deg1𝑅) = ( deg1𝑅)
226, 7, 8, 21hbtlem1 40948 . . . . . . . . . . 11 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
231, 4, 5, 22syl3anc 1370 . . . . . . . . . 10 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
2417rnmpt 5864 . . . . . . . . . . 11 ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)}
25 fveq2 6774 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (( deg1𝑅)‘𝑐) = (( deg1𝑅)‘𝑏))
2625breq1d 5084 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((( deg1𝑅)‘𝑐) ≤ 𝑋 ↔ (( deg1𝑅)‘𝑏) ≤ 𝑋))
2726rexrab 3633 . . . . . . . . . . . 12 (∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)))
2827abbii 2808 . . . . . . . . . . 11 {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)} = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
2924, 28eqtri 2766 . . . . . . . . . 10 ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
3023, 29eqtr4di 2796 . . . . . . . . 9 (𝜑 → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3130adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3220, 31sseqtrd 3961 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
33 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ∈ Fin)
34 fipreima 9125 . . . . . . 7 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ∧ 𝑎 ∈ Fin) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
3519, 32, 33, 34syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
36 elfpw 9121 . . . . . . . . . 10 (𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ↔ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin))
37 ssrab2 4013 . . . . . . . . . . . . . . . . 17 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼
38 sstr2 3928 . . . . . . . . . . . . . . . . 17 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ({𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼𝑘𝐼))
3937, 38mpi 20 . . . . . . . . . . . . . . . 16 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → 𝑘𝐼)
4039adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘𝐼)
41 velpw 4538 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 𝐼𝑘𝐼)
4240, 41sylibr 233 . . . . . . . . . . . . . 14 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ∈ 𝒫 𝐼)
4342adantrr 714 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ 𝒫 𝐼)
44 simprr 770 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ Fin)
4543, 44elind 4128 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ (𝒫 𝐼 ∩ Fin))
463adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑅 ∈ Ring)
476ply1ring 21419 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
483, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
4948adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑃 ∈ Ring)
50 simprl 768 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
5150, 37sstrdi 3933 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘𝐼)
52 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
5352, 7lidlss 20481 . . . . . . . . . . . . . . . . . 18 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
544, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ⊆ (Base‘𝑃))
5554adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝐼 ⊆ (Base‘𝑃))
5651, 55sstrd 3931 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (Base‘𝑃))
57 hbtlem6.n . . . . . . . . . . . . . . . 16 𝑁 = (RSpan‘𝑃)
5857, 52, 7rspcl 20493 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → (𝑁𝑘) ∈ 𝑈)
5949, 56, 58syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑁𝑘) ∈ 𝑈)
605adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑋 ∈ ℕ0)
616, 7, 8, 9hbtlem2 40949 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
6246, 59, 60, 61syl3anc 1370 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
63 df-ima 5602 . . . . . . . . . . . . . . 15 ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘)
6457, 52rspssid 20494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → 𝑘 ⊆ (𝑁𝑘))
6549, 56, 64syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (𝑁𝑘))
66 ssrab 4006 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘𝐼 ∧ ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋))
6766simprbi 497 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋)
6867ad2antrl 725 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋)
69 ssrab 4006 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ (𝑁𝑘) ∧ ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋))
7065, 68, 69sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
7170resmptd 5948 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
72 resmpt 5945 . . . . . . . . . . . . . . . . . . 19 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7372ad2antrl 725 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7471, 73eqtr4d 2781 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘))
75 resss 5916 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
7674, 75eqsstrrdi 3976 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
77 rnss 5848 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7876, 77syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7963, 78eqsstrid 3969 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
806, 7, 8, 21hbtlem1 40948 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
8146, 59, 60, 80syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
82 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
8382rnmpt 5864 . . . . . . . . . . . . . . . 16 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)}
8426rexrab 3633 . . . . . . . . . . . . . . . . 17 (∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)))
8584abbii 2808 . . . . . . . . . . . . . . . 16 {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)} = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8683, 85eqtri 2766 . . . . . . . . . . . . . . 15 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8781, 86eqtr4di 2796 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
8879, 87sseqtrrd 3962 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
8912, 9rspssp 20497 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9046, 62, 88, 89syl3anc 1370 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9145, 90jca 512 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
92 fveq2 6774 . . . . . . . . . . . . 13 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) = ((RSpan‘𝑅)‘𝑎))
9392sseq1d 3952 . . . . . . . . . . . 12 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
9493anbi2d 629 . . . . . . . . . . 11 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) ↔ (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9591, 94syl5ibcom 244 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9636, 95sylan2b 594 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9796expimpd 454 . . . . . . . 8 (𝜑 → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9897adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9998reximdv2 3199 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10035, 99mpd 15 . . . . 5 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
10115, 100sylan2b 594 . . . 4 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
102 sseq1 3946 . . . . 5 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
103102rexbidv 3226 . . . 4 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
104101, 103syl5ibrcom 246 . . 3 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
105104rexlimdva 3213 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10614, 105mpd 15 1 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  {crab 3068  cin 3886  wss 3887  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  ran crn 5590  cres 5591  cima 5592   Fn wfn 6428  cfv 6433  Fincfn 8733  cle 11010  0cn0 12233  Basecbs 16912  Ringcrg 19783  LIdealclidl 20432  RSpancrsp 20433  Poly1cpl1 21348  coe1cco1 21349   deg1 cdg1 25216  LNoeRclnr 40934  ldgIdlSeqcldgis 40946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-sra 20434  df-rgmod 20435  df-lidl 20436  df-rsp 20437  df-cnfld 20598  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-vr1 21352  df-ply1 21353  df-coe1 21354  df-mdeg 25217  df-deg1 25218  df-lfig 40893  df-lnm 40901  df-lnr 40935  df-ldgis 40947
This theorem is referenced by:  hbt  40955
  Copyright terms: Public domain W3C validator