Step | Hyp | Ref
| Expression |
1 | | hbtlem6.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ LNoeR) |
2 | | lnrring 40937 |
. . . . 5
⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | | hbtlem6.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑈) |
5 | | hbtlem6.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈
ℕ0) |
6 | | hbtlem.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
7 | | hbtlem.u |
. . . . 5
⊢ 𝑈 = (LIdeal‘𝑃) |
8 | | hbtlem.s |
. . . . 5
⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
9 | | eqid 2738 |
. . . . 5
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
10 | 6, 7, 8, 9 | hbtlem2 40949 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) |
11 | 3, 4, 5, 10 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) |
12 | | eqid 2738 |
. . . 4
⊢
(RSpan‘𝑅) =
(RSpan‘𝑅) |
13 | 9, 12 | lnr2i 40941 |
. . 3
⊢ ((𝑅 ∈ LNoeR ∧ ((𝑆‘𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) → ∃𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎)) |
14 | 1, 11, 13 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎)) |
15 | | elfpw 9121 |
. . . . 5
⊢ (𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin) ↔ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) |
16 | | fvex 6787 |
. . . . . . . . 9
⊢
((coe1‘𝑏)‘𝑋) ∈ V |
17 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) |
18 | 16, 17 | fnmpti 6576 |
. . . . . . . 8
⊢ (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) Fn {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) Fn {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}) |
20 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ((𝑆‘𝐼)‘𝑋)) |
21 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (
deg1 ‘𝑅) =
( deg1 ‘𝑅) |
22 | 6, 7, 8, 21 | hbtlem1 40948 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))}) |
23 | 1, 4, 5, 22 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))}) |
24 | 17 | rnmpt 5864 |
. . . . . . . . . . 11
⊢ ran
(𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1‘𝑏)‘𝑋)} |
25 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑐 = 𝑏 → (( deg1 ‘𝑅)‘𝑐) = (( deg1 ‘𝑅)‘𝑏)) |
26 | 25 | breq1d 5084 |
. . . . . . . . . . . . 13
⊢ (𝑐 = 𝑏 → ((( deg1 ‘𝑅)‘𝑐) ≤ 𝑋 ↔ (( deg1 ‘𝑅)‘𝑏) ≤ 𝑋)) |
27 | 26 | rexrab 3633 |
. . . . . . . . . . . 12
⊢
(∃𝑏 ∈
{𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1‘𝑏)‘𝑋) ↔ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))) |
28 | 27 | abbii 2808 |
. . . . . . . . . . 11
⊢ {𝑑 ∣ ∃𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1‘𝑏)‘𝑋)} = {𝑑 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))} |
29 | 24, 28 | eqtri 2766 |
. . . . . . . . . 10
⊢ ran
(𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ 𝐼 ((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑑 = ((coe1‘𝑏)‘𝑋))} |
30 | 23, 29 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) |
31 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑆‘𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) |
32 | 20, 31 | sseqtrd 3961 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ran (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) |
33 | | simprr 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ∈ Fin) |
34 | | fipreima 9125 |
. . . . . . 7
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) Fn {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑎 ⊆ ran (𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ∧ 𝑎 ∈ Fin) → ∃𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎) |
35 | 19, 32, 33, 34 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎) |
36 | | elfpw 9121 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ↔ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) |
37 | | ssrab2 4013 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼 |
38 | | sstr2 3928 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} → ({𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼 → 𝑘 ⊆ 𝐼)) |
39 | 37, 38 | mpi 20 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} → 𝑘 ⊆ 𝐼) |
40 | 39 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ⊆ 𝐼) |
41 | | velpw 4538 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ 𝒫 𝐼 ↔ 𝑘 ⊆ 𝐼) |
42 | 40, 41 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ∈ 𝒫 𝐼) |
43 | 42 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ 𝒫 𝐼) |
44 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ Fin) |
45 | 43, 44 | elind 4128 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ (𝒫 𝐼 ∩ Fin)) |
46 | 3 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑅 ∈ Ring) |
47 | 6 | ply1ring 21419 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
48 | 3, 47 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ Ring) |
49 | 48 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑃 ∈ Ring) |
50 | | simprl 768 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}) |
51 | 50, 37 | sstrdi 3933 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ 𝐼) |
52 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Base‘𝑃) =
(Base‘𝑃) |
53 | 52, 7 | lidlss 20481 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ 𝑈 → 𝐼 ⊆ (Base‘𝑃)) |
54 | 4, 53 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ⊆ (Base‘𝑃)) |
55 | 54 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝐼 ⊆ (Base‘𝑃)) |
56 | 51, 55 | sstrd 3931 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (Base‘𝑃)) |
57 | | hbtlem6.n |
. . . . . . . . . . . . . . . 16
⊢ 𝑁 = (RSpan‘𝑃) |
58 | 57, 52, 7 | rspcl 20493 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → (𝑁‘𝑘) ∈ 𝑈) |
59 | 49, 56, 58 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑁‘𝑘) ∈ 𝑈) |
60 | 5 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑋 ∈
ℕ0) |
61 | 6, 7, 8, 9 | hbtlem2 40949 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑘) ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘(𝑁‘𝑘))‘𝑋) ∈ (LIdeal‘𝑅)) |
62 | 46, 59, 60, 61 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁‘𝑘))‘𝑋) ∈ (LIdeal‘𝑅)) |
63 | | df-ima 5602 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = ran ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) |
64 | 57, 52 | rspssid 20494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → 𝑘 ⊆ (𝑁‘𝑘)) |
65 | 49, 56, 64 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (𝑁‘𝑘)) |
66 | | ssrab 4006 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ 𝐼 ∧ ∀𝑐 ∈ 𝑘 (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋)) |
67 | 66 | simprbi 497 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} → ∀𝑐 ∈ 𝑘 (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋) |
68 | 67 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ∀𝑐 ∈ 𝑘 (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋) |
69 | | ssrab 4006 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ⊆ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ (𝑁‘𝑘) ∧ ∀𝑐 ∈ 𝑘 (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋)) |
70 | 65, 68, 69 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}) |
71 | 70 | resmptd 5948 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) = (𝑏 ∈ 𝑘 ↦ ((coe1‘𝑏)‘𝑋))) |
72 | | resmpt 5945 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) = (𝑏 ∈ 𝑘 ↦ ((coe1‘𝑏)‘𝑋))) |
73 | 72 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) = (𝑏 ∈ 𝑘 ↦ ((coe1‘𝑏)‘𝑋))) |
74 | 71, 73 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) = ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘)) |
75 | | resss 5916 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) |
76 | 74, 75 | eqsstrrdi 3976 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) |
77 | | rnss 5848 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) → ran ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ran ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) |
79 | 63, 78 | eqsstrid 3969 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) |
80 | 6, 7, 8, 21 | hbtlem1 40948 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑘) ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘(𝑁‘𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁‘𝑘)((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))}) |
81 | 46, 59, 60, 80 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁‘𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁‘𝑘)((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))}) |
82 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) |
83 | 82 | rnmpt 5864 |
. . . . . . . . . . . . . . . 16
⊢ ran
(𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1‘𝑏)‘𝑋)} |
84 | 26 | rexrab 3633 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑏 ∈
{𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1‘𝑏)‘𝑋) ↔ ∃𝑏 ∈ (𝑁‘𝑘)((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))) |
85 | 84 | abbii 2808 |
. . . . . . . . . . . . . . . 16
⊢ {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1‘𝑏)‘𝑋)} = {𝑒 ∣ ∃𝑏 ∈ (𝑁‘𝑘)((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))} |
86 | 83, 85 | eqtri 2766 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ (𝑁‘𝑘)((( deg1 ‘𝑅)‘𝑏) ≤ 𝑋 ∧ 𝑒 = ((coe1‘𝑏)‘𝑋))} |
87 | 81, 86 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁‘𝑘))‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ (𝑁‘𝑘) ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋))) |
88 | 79, 87 | sseqtrrd 3962 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) |
89 | 12, 9 | rspssp 20497 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ ((𝑆‘(𝑁‘𝑘))‘𝑋) ∈ (LIdeal‘𝑅) ∧ ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) |
90 | 46, 62, 88, 89 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) |
91 | 45, 90 | jca 512 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) |
92 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) = ((RSpan‘𝑅)‘𝑎)) |
93 | 92 | sseq1d 3952 |
. . . . . . . . . . . 12
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) |
94 | 93 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) ↔ (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) |
95 | 91, 94 | syl5ibcom 244 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑘 ⊆ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) |
96 | 36, 95 | sylan2b 594 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)) → (((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) |
97 | 96 | expimpd 454 |
. . . . . . . 8
⊢ (𝜑 → ((𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) |
98 | 97 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)))) |
99 | 98 | reximdv2 3199 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (∃𝑘 ∈ (𝒫 {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐 ∈ 𝐼 ∣ (( deg1 ‘𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1‘𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) |
100 | 35, 99 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ⊆ ((𝑆‘𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) |
101 | 15, 100 | sylan2b 594 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) |
102 | | sseq1 3946 |
. . . . 5
⊢ (((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) |
103 | 102 | rexbidv 3226 |
. . . 4
⊢ (((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋) ↔ ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) |
104 | 101, 103 | syl5ibrcom 246 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)) → (((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) |
105 | 104 | rexlimdva 3213 |
. 2
⊢ (𝜑 → (∃𝑎 ∈ (𝒫 ((𝑆‘𝐼)‘𝑋) ∩ Fin)((𝑆‘𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋))) |
106 | 14, 105 | mpd 15 |
1
⊢ (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) |