Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem6 Structured version   Visualization version   GIF version

Theorem hbtlem6 41359
Description: There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem6.n 𝑁 = (RSpan‘𝑃)
hbtlem6.r (𝜑𝑅 ∈ LNoeR)
hbtlem6.i (𝜑𝐼𝑈)
hbtlem6.x (𝜑𝑋 ∈ ℕ0)
Assertion
Ref Expression
hbtlem6 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑅,𝑘   𝑆,𝑘   𝑘,𝑋
Allowed substitution hints:   𝑃(𝑘)   𝑈(𝑘)   𝑁(𝑘)

Proof of Theorem hbtlem6
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem6.r . . 3 (𝜑𝑅 ∈ LNoeR)
2 lnrring 41342 . . . . 5 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
4 hbtlem6.i . . . 4 (𝜑𝐼𝑈)
5 hbtlem6.x . . . 4 (𝜑𝑋 ∈ ℕ0)
6 hbtlem.p . . . . 5 𝑃 = (Poly1𝑅)
7 hbtlem.u . . . . 5 𝑈 = (LIdeal‘𝑃)
8 hbtlem.s . . . . 5 𝑆 = (ldgIdlSeq‘𝑅)
9 eqid 2738 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
106, 7, 8, 9hbtlem2 41354 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
113, 4, 5, 10syl3anc 1372 . . 3 (𝜑 → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
12 eqid 2738 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
139, 12lnr2i 41346 . . 3 ((𝑅 ∈ LNoeR ∧ ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
141, 11, 13syl2anc 585 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
15 elfpw 9257 . . . . 5 (𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin) ↔ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin))
16 fvex 6853 . . . . . . . . 9 ((coe1𝑏)‘𝑋) ∈ V
17 eqid 2738 . . . . . . . . 9 (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
1816, 17fnmpti 6642 . . . . . . . 8 (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}
1918a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
20 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ((𝑆𝐼)‘𝑋))
21 eqid 2738 . . . . . . . . . . . 12 ( deg1𝑅) = ( deg1𝑅)
226, 7, 8, 21hbtlem1 41353 . . . . . . . . . . 11 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
231, 4, 5, 22syl3anc 1372 . . . . . . . . . 10 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
2417rnmpt 5909 . . . . . . . . . . 11 ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)}
25 fveq2 6840 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (( deg1𝑅)‘𝑐) = (( deg1𝑅)‘𝑏))
2625breq1d 5114 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((( deg1𝑅)‘𝑐) ≤ 𝑋 ↔ (( deg1𝑅)‘𝑏) ≤ 𝑋))
2726rexrab 3653 . . . . . . . . . . . 12 (∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)))
2827abbii 2808 . . . . . . . . . . 11 {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)} = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
2924, 28eqtri 2766 . . . . . . . . . 10 ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
3023, 29eqtr4di 2796 . . . . . . . . 9 (𝜑 → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3130adantr 482 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3220, 31sseqtrd 3983 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
33 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ∈ Fin)
34 fipreima 9261 . . . . . . 7 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ∧ 𝑎 ∈ Fin) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
3519, 32, 33, 34syl3anc 1372 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
36 elfpw 9257 . . . . . . . . . 10 (𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ↔ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin))
37 ssrab2 4036 . . . . . . . . . . . . . . . . 17 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼
38 sstr2 3950 . . . . . . . . . . . . . . . . 17 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ({𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼𝑘𝐼))
3937, 38mpi 20 . . . . . . . . . . . . . . . 16 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → 𝑘𝐼)
4039adantl 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘𝐼)
41 velpw 4564 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 𝐼𝑘𝐼)
4240, 41sylibr 233 . . . . . . . . . . . . . 14 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ∈ 𝒫 𝐼)
4342adantrr 716 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ 𝒫 𝐼)
44 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ Fin)
4543, 44elind 4153 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ (𝒫 𝐼 ∩ Fin))
463adantr 482 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑅 ∈ Ring)
476ply1ring 21571 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
483, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
4948adantr 482 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑃 ∈ Ring)
50 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
5150, 37sstrdi 3955 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘𝐼)
52 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
5352, 7lidlss 20633 . . . . . . . . . . . . . . . . . 18 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
544, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ⊆ (Base‘𝑃))
5554adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝐼 ⊆ (Base‘𝑃))
5651, 55sstrd 3953 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (Base‘𝑃))
57 hbtlem6.n . . . . . . . . . . . . . . . 16 𝑁 = (RSpan‘𝑃)
5857, 52, 7rspcl 20645 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → (𝑁𝑘) ∈ 𝑈)
5949, 56, 58syl2anc 585 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑁𝑘) ∈ 𝑈)
605adantr 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑋 ∈ ℕ0)
616, 7, 8, 9hbtlem2 41354 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
6246, 59, 60, 61syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
63 df-ima 5645 . . . . . . . . . . . . . . 15 ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘)
6457, 52rspssid 20646 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → 𝑘 ⊆ (𝑁𝑘))
6549, 56, 64syl2anc 585 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (𝑁𝑘))
66 ssrab 4029 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘𝐼 ∧ ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋))
6766simprbi 498 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋)
6867ad2antrl 727 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋)
69 ssrab 4029 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ (𝑁𝑘) ∧ ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋))
7065, 68, 69sylanbrc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
7170resmptd 5993 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
72 resmpt 5990 . . . . . . . . . . . . . . . . . . 19 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7372ad2antrl 727 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7471, 73eqtr4d 2781 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘))
75 resss 5961 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
7674, 75eqsstrrdi 3998 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
77 rnss 5893 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7876, 77syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7963, 78eqsstrid 3991 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
806, 7, 8, 21hbtlem1 41353 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
8146, 59, 60, 80syl3anc 1372 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
82 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
8382rnmpt 5909 . . . . . . . . . . . . . . . 16 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)}
8426rexrab 3653 . . . . . . . . . . . . . . . . 17 (∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)))
8584abbii 2808 . . . . . . . . . . . . . . . 16 {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)} = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8683, 85eqtri 2766 . . . . . . . . . . . . . . 15 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8781, 86eqtr4di 2796 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
8879, 87sseqtrrd 3984 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
8912, 9rspssp 20649 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9046, 62, 88, 89syl3anc 1372 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9145, 90jca 513 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
92 fveq2 6840 . . . . . . . . . . . . 13 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) = ((RSpan‘𝑅)‘𝑎))
9392sseq1d 3974 . . . . . . . . . . . 12 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
9493anbi2d 630 . . . . . . . . . . 11 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) ↔ (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9591, 94syl5ibcom 245 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9636, 95sylan2b 595 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9796expimpd 455 . . . . . . . 8 (𝜑 → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9897adantr 482 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9998reximdv2 3160 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10035, 99mpd 15 . . . . 5 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
10115, 100sylan2b 595 . . . 4 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
102 sseq1 3968 . . . . 5 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
103102rexbidv 3174 . . . 4 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
104101, 103syl5ibrcom 247 . . 3 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
105104rexlimdva 3151 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10614, 105mpd 15 1 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2715  wral 3063  wrex 3072  {crab 3406  cin 3908  wss 3909  𝒫 cpw 4559   class class class wbr 5104  cmpt 5187  ran crn 5633  cres 5634  cima 5635   Fn wfn 6489  cfv 6494  Fincfn 8842  cle 11149  0cn0 12372  Basecbs 17043  Ringcrg 19918  LIdealclidl 20584  RSpancrsp 20585  Poly1cpl1 21500  coe1cco1 21501   deg1 cdg1 25368  LNoeRclnr 41339  ldgIdlSeqcldgis 41351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665  ax-cnex 11066  ax-resscn 11067  ax-1cn 11068  ax-icn 11069  ax-addcl 11070  ax-addrcl 11071  ax-mulcl 11072  ax-mulrcl 11073  ax-mulcom 11074  ax-addass 11075  ax-mulass 11076  ax-distr 11077  ax-i2m1 11078  ax-1ne0 11079  ax-1rid 11080  ax-rnegex 11081  ax-rrecex 11082  ax-cnre 11083  ax-pre-lttri 11084  ax-pre-lttrn 11085  ax-pre-ltadd 11086  ax-pre-mulgt0 11087  ax-pre-sup 11088  ax-addf 11089  ax-mulf 11090
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-isom 6503  df-riota 7308  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7610  df-ofr 7611  df-om 7796  df-1st 7914  df-2nd 7915  df-supp 8086  df-frecs 8205  df-wrecs 8236  df-recs 8310  df-rdg 8349  df-1o 8405  df-er 8607  df-map 8726  df-pm 8727  df-ixp 8795  df-en 8843  df-dom 8844  df-sdom 8845  df-fin 8846  df-fsupp 9265  df-sup 9337  df-oi 9405  df-card 9834  df-pnf 11150  df-mnf 11151  df-xr 11152  df-ltxr 11153  df-le 11154  df-sub 11346  df-neg 11347  df-nn 12113  df-2 12175  df-3 12176  df-4 12177  df-5 12178  df-6 12179  df-7 12180  df-8 12181  df-9 12182  df-n0 12373  df-z 12459  df-dec 12578  df-uz 12723  df-fz 13380  df-fzo 13523  df-seq 13862  df-hash 14185  df-struct 16979  df-sets 16996  df-slot 17014  df-ndx 17026  df-base 17044  df-ress 17073  df-plusg 17106  df-mulr 17107  df-starv 17108  df-sca 17109  df-vsca 17110  df-ip 17111  df-tset 17112  df-ple 17113  df-ds 17115  df-unif 17116  df-0g 17283  df-gsum 17284  df-mre 17426  df-mrc 17427  df-acs 17429  df-mgm 18457  df-sgrp 18506  df-mnd 18517  df-mhm 18561  df-submnd 18562  df-grp 18711  df-minusg 18712  df-sbg 18713  df-mulg 18832  df-subg 18884  df-ghm 18965  df-cntz 19056  df-cmn 19523  df-abl 19524  df-mgp 19856  df-ur 19873  df-ring 19920  df-cring 19921  df-subrg 20173  df-lmod 20277  df-lss 20346  df-lsp 20386  df-sra 20586  df-rgmod 20587  df-lidl 20588  df-rsp 20589  df-cnfld 20750  df-ascl 21214  df-psr 21264  df-mvr 21265  df-mpl 21266  df-opsr 21268  df-psr1 21503  df-vr1 21504  df-ply1 21505  df-coe1 21506  df-mdeg 25369  df-deg1 25370  df-lfig 41298  df-lnm 41306  df-lnr 41340  df-ldgis 41352
This theorem is referenced by:  hbt  41360
  Copyright terms: Public domain W3C validator