Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem6 Structured version   Visualization version   GIF version

Theorem hbtlem6 40870
Description: There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem6.n 𝑁 = (RSpan‘𝑃)
hbtlem6.r (𝜑𝑅 ∈ LNoeR)
hbtlem6.i (𝜑𝐼𝑈)
hbtlem6.x (𝜑𝑋 ∈ ℕ0)
Assertion
Ref Expression
hbtlem6 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Distinct variable groups:   𝜑,𝑘   𝑘,𝐼   𝑅,𝑘   𝑆,𝑘   𝑘,𝑋
Allowed substitution hints:   𝑃(𝑘)   𝑈(𝑘)   𝑁(𝑘)

Proof of Theorem hbtlem6
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem6.r . . 3 (𝜑𝑅 ∈ LNoeR)
2 lnrring 40853 . . . . 5 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
31, 2syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
4 hbtlem6.i . . . 4 (𝜑𝐼𝑈)
5 hbtlem6.x . . . 4 (𝜑𝑋 ∈ ℕ0)
6 hbtlem.p . . . . 5 𝑃 = (Poly1𝑅)
7 hbtlem.u . . . . 5 𝑈 = (LIdeal‘𝑃)
8 hbtlem.s . . . . 5 𝑆 = (ldgIdlSeq‘𝑅)
9 eqid 2738 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
106, 7, 8, 9hbtlem2 40865 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
113, 4, 5, 10syl3anc 1369 . . 3 (𝜑 → ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅))
12 eqid 2738 . . . 4 (RSpan‘𝑅) = (RSpan‘𝑅)
139, 12lnr2i 40857 . . 3 ((𝑅 ∈ LNoeR ∧ ((𝑆𝐼)‘𝑋) ∈ (LIdeal‘𝑅)) → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
141, 11, 13syl2anc 583 . 2 (𝜑 → ∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎))
15 elfpw 9051 . . . . 5 (𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin) ↔ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin))
16 fvex 6769 . . . . . . . . 9 ((coe1𝑏)‘𝑋) ∈ V
17 eqid 2738 . . . . . . . . 9 (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
1816, 17fnmpti 6560 . . . . . . . 8 (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}
1918a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
20 simprl 767 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ((𝑆𝐼)‘𝑋))
21 eqid 2738 . . . . . . . . . . . 12 ( deg1𝑅) = ( deg1𝑅)
226, 7, 8, 21hbtlem1 40864 . . . . . . . . . . 11 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
231, 4, 5, 22syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))})
2417rnmpt 5853 . . . . . . . . . . 11 ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)}
25 fveq2 6756 . . . . . . . . . . . . . 14 (𝑐 = 𝑏 → (( deg1𝑅)‘𝑐) = (( deg1𝑅)‘𝑏))
2625breq1d 5080 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((( deg1𝑅)‘𝑐) ≤ 𝑋 ↔ (( deg1𝑅)‘𝑏) ≤ 𝑋))
2726rexrab 3626 . . . . . . . . . . . 12 (∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)))
2827abbii 2809 . . . . . . . . . . 11 {𝑑 ∣ ∃𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑑 = ((coe1𝑏)‘𝑋)} = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
2924, 28eqtri 2766 . . . . . . . . . 10 ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑑 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))}
3023, 29eqtr4di 2797 . . . . . . . . 9 (𝜑 → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3130adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑆𝐼)‘𝑋) = ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
3220, 31sseqtrd 3957 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
33 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → 𝑎 ∈ Fin)
34 fipreima 9055 . . . . . . 7 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) Fn {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑎 ⊆ ran (𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ∧ 𝑎 ∈ Fin) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
3519, 32, 33, 34syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎)
36 elfpw 9051 . . . . . . . . . 10 (𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ↔ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin))
37 ssrab2 4009 . . . . . . . . . . . . . . . . 17 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼
38 sstr2 3924 . . . . . . . . . . . . . . . . 17 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ({𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ⊆ 𝐼𝑘𝐼))
3937, 38mpi 20 . . . . . . . . . . . . . . . 16 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → 𝑘𝐼)
4039adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘𝐼)
41 velpw 4535 . . . . . . . . . . . . . . 15 (𝑘 ∈ 𝒫 𝐼𝑘𝐼)
4240, 41sylibr 233 . . . . . . . . . . . . . 14 ((𝜑𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}) → 𝑘 ∈ 𝒫 𝐼)
4342adantrr 713 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ 𝒫 𝐼)
44 simprr 769 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ Fin)
4543, 44elind 4124 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ∈ (𝒫 𝐼 ∩ Fin))
463adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑅 ∈ Ring)
476ply1ring 21329 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
483, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
4948adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑃 ∈ Ring)
50 simprl 767 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
5150, 37sstrdi 3929 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘𝐼)
52 eqid 2738 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
5352, 7lidlss 20394 . . . . . . . . . . . . . . . . . 18 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
544, 53syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐼 ⊆ (Base‘𝑃))
5554adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝐼 ⊆ (Base‘𝑃))
5651, 55sstrd 3927 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (Base‘𝑃))
57 hbtlem6.n . . . . . . . . . . . . . . . 16 𝑁 = (RSpan‘𝑃)
5857, 52, 7rspcl 20406 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → (𝑁𝑘) ∈ 𝑈)
5949, 56, 58syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑁𝑘) ∈ 𝑈)
605adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑋 ∈ ℕ0)
616, 7, 8, 9hbtlem2 40865 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
6246, 59, 60, 61syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅))
63 df-ima 5593 . . . . . . . . . . . . . . 15 ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘)
6457, 52rspssid 20407 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ Ring ∧ 𝑘 ⊆ (Base‘𝑃)) → 𝑘 ⊆ (𝑁𝑘))
6549, 56, 64syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ (𝑁𝑘))
66 ssrab 4002 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘𝐼 ∧ ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋))
6766simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋)
6867ad2antrl 724 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋)
69 ssrab 4002 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↔ (𝑘 ⊆ (𝑁𝑘) ∧ ∀𝑐𝑘 (( deg1𝑅)‘𝑐) ≤ 𝑋))
7065, 68, 69sylanbrc 582 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → 𝑘 ⊆ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋})
7170resmptd 5937 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
72 resmpt 5934 . . . . . . . . . . . . . . . . . . 19 (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7372ad2antrl 724 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = (𝑏𝑘 ↦ ((coe1𝑏)‘𝑋)))
7471, 73eqtr4d 2781 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) = ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘))
75 resss 5905 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
7674, 75eqsstrrdi 3972 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
77 rnss 5837 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7876, 77syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ran ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) ↾ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
7963, 78eqsstrid 3965 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
806, 7, 8, 21hbtlem1 40864 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Ring ∧ (𝑁𝑘) ∈ 𝑈𝑋 ∈ ℕ0) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
8146, 59, 60, 80syl3anc 1369 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))})
82 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋))
8382rnmpt 5853 . . . . . . . . . . . . . . . 16 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)}
8426rexrab 3626 . . . . . . . . . . . . . . . . 17 (∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋) ↔ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)))
8584abbii 2809 . . . . . . . . . . . . . . . 16 {𝑒 ∣ ∃𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋}𝑒 = ((coe1𝑏)‘𝑋)} = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8683, 85eqtri 2766 . . . . . . . . . . . . . . 15 ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) = {𝑒 ∣ ∃𝑏 ∈ (𝑁𝑘)((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))}
8781, 86eqtr4di 2797 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑆‘(𝑁𝑘))‘𝑋) = ran (𝑏 ∈ {𝑐 ∈ (𝑁𝑘) ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)))
8879, 87sseqtrrd 3958 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
8912, 9rspssp 20410 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ ((𝑆‘(𝑁𝑘))‘𝑋) ∈ (LIdeal‘𝑅) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9046, 62, 88, 89syl3anc 1369 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
9145, 90jca 511 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
92 fveq2 6756 . . . . . . . . . . . . 13 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) = ((RSpan‘𝑅)‘𝑎))
9392sseq1d 3948 . . . . . . . . . . . 12 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
9493anbi2d 628 . . . . . . . . . . 11 (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ((𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘)) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)) ↔ (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9591, 94syl5ibcom 244 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ⊆ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∧ 𝑘 ∈ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9636, 95sylan2b 593 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)) → (((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9796expimpd 453 . . . . . . . 8 (𝜑 → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9897adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ((𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin) ∧ ((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎) → (𝑘 ∈ (𝒫 𝐼 ∩ Fin) ∧ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))))
9998reximdv2 3198 . . . . . 6 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → (∃𝑘 ∈ (𝒫 {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ∩ Fin)((𝑏 ∈ {𝑐𝐼 ∣ (( deg1𝑅)‘𝑐) ≤ 𝑋} ↦ ((coe1𝑏)‘𝑋)) “ 𝑘) = 𝑎 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10035, 99mpd 15 . . . . 5 ((𝜑 ∧ (𝑎 ⊆ ((𝑆𝐼)‘𝑋) ∧ 𝑎 ∈ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
10115, 100sylan2b 593 . . . 4 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
102 sseq1 3942 . . . . 5 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
103102rexbidv 3225 . . . 4 (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → (∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋) ↔ ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((RSpan‘𝑅)‘𝑎) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
104101, 103syl5ibrcom 246 . . 3 ((𝜑𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)) → (((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
105104rexlimdva 3212 . 2 (𝜑 → (∃𝑎 ∈ (𝒫 ((𝑆𝐼)‘𝑋) ∩ Fin)((𝑆𝐼)‘𝑋) = ((RSpan‘𝑅)‘𝑎) → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋)))
10614, 105mpd 15 1 (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁𝑘))‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  {crab 3067  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  ran crn 5581  cres 5582  cima 5583   Fn wfn 6413  cfv 6418  Fincfn 8691  cle 10941  0cn0 12163  Basecbs 16840  Ringcrg 19698  LIdealclidl 20347  RSpancrsp 20348  Poly1cpl1 21258  coe1cco1 21259   deg1 cdg1 25121  LNoeRclnr 40850  ldgIdlSeqcldgis 40862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-sra 20349  df-rgmod 20350  df-lidl 20351  df-rsp 20352  df-cnfld 20511  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-mdeg 25122  df-deg1 25123  df-lfig 40809  df-lnm 40817  df-lnr 40851  df-ldgis 40863
This theorem is referenced by:  hbt  40871
  Copyright terms: Public domain W3C validator